首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Beech wood derived xylan to hydrolyzed to predominantly xylose monomer units after exposure to hot, compressed liquid water saturated with carbon dioxide. Similar treatment without CO2 saturation resulted in only minor hydrolysis and a smaller fraction of monomers among the hydrolysis products. Severity of the hydrolysis reaction was correlated to reaction time, temperature, and carbon dioxide partial pressure and followed a function similar to those used to characterize mineral acid systems. Results from parallel hydrolysis experiments with an aqueous system and a very dilute sulfuric acid system allowed an approximation of the dissociation constant of carbonic acid in the temperature range of 170–230°C. Results suggest that carbonic acid may be a viable reagent for promoting hydrolysis without mineral acids, especially in the case of a bioprocessing plant that produces carbon dioxide.  相似文献   

2.
Hydrolysates produced by the pretreatment of aspen wood with liquid hot water were compared with hydrolysates produced using carbonic acid pretreatment. Pretreatment temperatures tested ranged from 180° to 220°C; reaction times were varied between 2.5 and 30.5 min. Under most conditions tested, it was found that the presence of carbonic acid had no discernible effect on the amount of xylose released or concentration of furan compounds, as indicated by ultraviolet-visual absorbance between 270 and 280 nm. Thus, there appears to be little difference in the severity of the pretreatment conditions with or without the presence of carbonic acid. The presence of carbonic acid did, however, result in a hydrolysate with a higher final pH. It is hypothesized that the presence of the carbonic acid during the reaction may have the effect of reducing the accumulation of organic acids in the hydrolysate.  相似文献   

3.
This research quantified the enzymatic digestibility of the solid component and the microbial inhibition of the liquid component of pretreated aspen wood and cornstover hydrolysates. Products of liquid hot water and carbonic acid pretreatment were compared. Pretreatment temperatures tested ranged from 180 to 220°C, and reaction times were varied between 4 and 64 min. Both microbial inhibition rates and enzymatic hydrolysis rates showed no difference between pretreatments containing carbonic acid and those not containing no carbonic acid. Microbial inhibition increased as the reaction severity increased, but only above a midpoint severity parameter of 200°C for 16 min. Both the rates and yields of enzymatic hydrolysis displayed an increase from the lowest tested reaction severity to the highest tested reaction severity.  相似文献   

4.
The Biomass Refining Consortium for Applied Fundamentals and Innovation, with members from Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, has developed comparative data on the conversion of corn stover to sugars by several leading pretreatment technologies. These technologies include ammonia fiber expansion pretreatment, ammonia recycle percolation pretreatment, dilute sulfuric acid pretreatment, flowthrough pretreatment (hot water or dilute acid), lime pretreatment, controlled pH hot water pretreatment, and sulfur dioxide steam explosion pretreatment. Over the course of two separate USDA- and DOE-funded projects, these pretreatment technologies were applied to two different corn stover batches, followed by enzymatic hydrolysis of the remaining solids from each pretreatment technology using identical enzyme preparations, enzyme loadings, and enzymatic hydrolysis assays. Identical analytical methods and a consistent material balance methodology were employed to develop comparative sugar yield data for each pretreatment and subsequent enzymatic hydrolysis. Although there were differences in the profiles of sugar release, with the more acidic pretreatments releasing more xylose directly in the pretreatment step than the alkaline pretreatments, the overall glucose and xylose yields (monomers + oligomers) from combined pretreatment and enzymatic hydrolysis process steps were very similar for all of these leading pretreatment technologies. Some of the water-only and alkaline pretreatment technologies resulted in significant amounts of residual xylose oligomers still remaining after enzymatic hydrolysis that may require specialized enzyme preparations to fully convert xylose oligomers to monomers.  相似文献   

5.
In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.  相似文献   

6.
High-pressure carbon dioxide in contact with water dissolves to form carbonic acid, causing a decrease in pH. By use of these characteristics of a CO2/H2O biphasic system, chitosan-coated cationic liposomes of l-alpha-dipalmitoylphosphatidylcholine were successfully prepared by an improved supercritical reverse-phase evaporation (ISCRPE) method. Liposome-chitosan complexes carrying a positive charge were prepared in a single-step procedure without the use of acid or organic solvent, including ethanol. The maximum trapping efficiency of liposomes prepared by the ISCRPE method was 17%, with or without the addition of chitosan, compared to only 2% for liposomes prepared by the Bangham method. Furthermore, the liposomal dispersion was stable at room temperature in a sealed tube for over 30 days.  相似文献   

7.
《印度化学会志》2021,98(10):100147
Lignocellulosic biomass can play a pivotal role in achieving the goal of sustainable development of a predominantly agrarian country like India. The abundant availability of lignocellulosic materials makes it more suitable to go for the energization of this waste material. Lignocellulosic agriculture waste is essentially renewable and carbon-neutral source of energy. It has the potential to minimize greenhouse gas emissions by adopting proper biomass to energy conversion routes like biochemical conversion to mitigate climate change. Pretreatment of lignocellulosic biomass is a compulsory step for delignification before hydrolysis and subsequent AD or fermentation process to facilitate enhanced biofuel (biogas/bioethanol) generation. The most studied pretreatment methods of lignocellulosic agricultural biomass in the past 10 years including acid, alkali, ionic liquid, microwave, ultrasonication, steam explosion, liquid hot water, ammonia-based, biological, and electrohydrolysis pretreatments methods are discussed in this review paper. The criteria to measure pretreatment efficiency, different pretreatment processes parameters, and their pros and cons are also discussed. The alkaline pretreatment method is most promising in the delignification of lignocellulosic agricultural biomass residues like rice straw. This review may impart help to the prospective researchers in understanding rubrics of different pretreatment processes for further research work in the area of pretreatment.  相似文献   

8.
Furfural, a byproduct formed during the thermal/chemical pre-treatment of hemicellulosic biomass, was degraded to methane and carbon dioxide under anaerobic conditions. The consortium of anaerobic microbes responsible for the degradation was enriched using small continuously stirred tank reactor (CSTR) systems with daily batch feeding of biomass pretreatment liquor and continuous addition of furfural. Although the continuous infusion of furfural was initially inhibitory to the anaerobic CSTR system, adaptation of the consortium occurred rapidly with high rates of furfural addition. Addition rates of 7.35 mg furfural/700-mL reactor/d resulted in biogas productions of 375%, of that produced in control CSTR systems, fed the biomass pretreatment liquor only. The anaerobic CSTR system fed high levels of furfural was stable, with a sludge pH of 7.1 and methane gas composition of 69%, compared to the control CSTR, which had a pH of 7.2 and 77% methane. CSTR systems in which furfural was continuously added resulted in 80% of the theoretically expected biogas. Intermediates in the anaerobic biodegradation of furfural were determined by spike additions in serum-bottle assays using the enriched consortium from the CSTR systems. Furfural was converted to several intermediates, including furfuryl alcohol, furoic acid, and acetic acid, before final conversion to methane and carbon dioxide.  相似文献   

9.
Sugarcane bagasse is a potential lignocellulosic feedstock for ethanol production, since it is cheap, readily available, and has a high carbohydrate content. In this work, bagasse was subjected to steam explosion pretreatment with different impregnation conditions. Three parallel pretreatments were carried out, one without any impregnation, a second with sulfur dioxide, and a third with sulfuric acid as the impregnating agent. The pretreatments were performed at 205°C for 10 min. The pretreated material was then hydrolyzed using celluloytic enzymes. The chemical composition of the hydrolyzates was analyzed. The highest yields of xylose (16.2 g/100 g dry bagasse), arabinose (1.5 g/100 g), and total sugar (52.9 g/100 g) were obtained in the hydrolysis of the SO2-impregnated bagasse. The H2SO4-impregnated bagasse gave the highest glucose yield (35.9 g/100 g) but the lowest total sugar yield (42.3 g/100 g) among the three methods. The low total sugar yield from the H2SO4-impregnated bagasse was largely due to by-product formation, as the dehydration of xylose to furfural. Sulfuric acid impregnation led to a three-fold increase in the concentration of the fermentation inhibitors furfural and 5-hydroxymethylfurfural (HMF) and a two-fold increase in the concentration of inhibitory aliphatic acids (formic, acetic, and levulinic acids) compared to the other two pretreatment methods. The total content of phenolic compounds was not strongly affected by the different pretreatment methods, but the quantities of separate phenolic compounds were widely different in the hydrolyzate from the H2SO4-impregnated bagasse compared with the other two hydrolyzates. No major differences in the content of inhibitors were observed in the hydrolyzates obtained from SO2-impregnated and non-impregnated bagasse. The fermentability of all three hydrolyzates was tested with a xylose-utilizing Saccharomyces cerevisiae strain with and without nutrient supplementation. The hydrolyzates of SO2-impregnated and nonimpregnated bagasse showed similar fermentability, whereas the hydrolyzate of H2SO4-impregnated bagasse fermented considerably poorer.  相似文献   

10.
Empty fruit bunch (EFB), a residual product of the palm plantation, is an attractive biomass for biorefinery. As xylan is susceptible to high temperature pretreatment, it is important to setup a proper pretreatment condition to maximize the sugar recovery from EFB. Kinetic parameters of mathematical models were obtained in order to predict the concentration of xylose, glucose, furfural, and acetic acid in the hydrolysate and to find production conditions of xylose. We investigated the kinetics of hot liquid water and dilute sulfuric acid hydrolysis over a 40-min period using a self-designed setup by measuring the concentrations of released sugars (xylose, glucose) and degradation products (acetic acid and furfural). The reaction was performed within the range 160~180 °C, under reaction conditions of various concentration of sulfuric acid (0.1~0.2%) and 1:7 solid-liquid ratio in a batch reactor. The kinetic constants can be expressed by the Arrhenius equation with the activation energy for the hydrolysis of sugar and decomposition of sugar. The activation energy of xylose was determined to be 136.2187 kJ mol(-1).  相似文献   

11.
Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.  相似文献   

12.
Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.  相似文献   

13.
Dilute acid and water only hemicellulose hydrolysis are being examined as part of a multiin stitutional cooperative effort to evaluate the performance of leading cellulosic biomass pretreatment technologies on a common basis. Cellulosic biomass, such as agricultural residues and forest wastes, canhave a significant mineral content. It has been shown that these minerals neutralize some of the acid during dilute acid pretreatment, reducing its effectiveness, and the higher solids loadings desired to minimize costs will require increased acid use to compensate. However, for sulfuric acid in particular, an equilibrium shift to formation of bisulfate during neutralization can further reduce hydrogen ion concentrations and compound the effect of neutralization. Because the equilibrium shift has a more pronounced effect at lower acid concentrations, additional acid is needed to compensate. Coupled with the effect of temperature on acid dissociation, these effects increase acid requirements to achieve a particular reaction rate unless minerals are removed prior to hydrolysis.  相似文献   

14.
We investigate a simple and accurate method for quantitatively analyzing dissolved inorganic carbon in environmental water by reaction headspace gas chromatography. The neutralization reaction between the inorganic carbon species (i.e. bicarbonate ions and carbonate ions) in environmental water and hydrochloric acid is carried out in a sealed headspace vial, and the carbon dioxide formed from the neutralization reaction, the self‐decomposition of carbonic acid, and dissolved carbon dioxide in environmental water is then analyzed by headspace gas chromatography. The data show that the headspace gas chromatography method has good precision (relative standard deviation ≤ 1.63%) and accuracy (relative differences ≤ 5.81% compared with the coulometric titration technique). The headspace gas chromatography method is simple, reliable, and can be well applied in the dissolved inorganic carbon detection in environmental water.  相似文献   

15.
Prehydrolysis with dilute acid and steam explosion constitute the most promising methods for improving enzymatic digestibility of biomass for ethanol production. Despite world wide acceptance, these methods of pretreatment are quite expensive considering costs for the reactor, energy, and fractionation. Using peracetic acid is a lignin-oxidation pretreatment with low-energy input by which biomass can be treated in a silo-type system without need for expensive capitalization. Experimentally, ground hybrid poplar and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on ovendried biomass. The ratio of solution to biomass is 6∶1 and a 7-d storage period at ambient temperature (20°C) has been used. As an auxiliary method, a series of pre-pretreatments using stoichiometri camounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass are performed before addition of peracetic acid. The basic solutions are added to the biomass in a ratio of 14∶1 solution to biomass, and mixed for 24 h at the same ambient temperature. Biomass is filtered and washed to a neutral pH before peracetic acid addition. The aforementioned procedures give high xylan content substrates as a function of the selectivity of peracetic acid for lignin oxidation and the mild conditions of the process. Consequently, xylanase/β-glucosidase combinations were more effective than cellulase preparations in hydrolyzing these materials. The pretreatment efficiency was evaluated through enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) tests. Peracetic ac treatment improves enzymatic digestibility of hybrid poplar and sugar cane bagasse with no need of high temperatures. Alkaline treatments are helpful in reducing peracetic acid requirements in the pretreatment.  相似文献   

16.
In this work, the phase behavior of the ternary system of carbon dioxide +1-butyl-3-methylimidazolium tetrafluoroborate?+?lithium tetrafluoroborate has been investigated. Mixtures of known concentrations of the salt, ionic liquid and carbon dioxide were prepared and their bubble point pressures were measured at different temperatures. Results are reported for this ternary system, at carbon dioxide concentrations of 20.2, 27.6 and 35.2?mol-% and salt concentrations of 0.0, 6.0, 11.5, 16.3 and 21.1?mol-% (on a carbon-dioxide free basis) and within temperature and pressure ranges of 293.15?C358.15?K and 1.2?C11.3?MPa, respectively. It was observed that the addition of the salt increased the bubble point pressure and its effect was concentration-dependent, i.e. at higher concentrations of the salt, higher pressures are required. This behavior is greater at higher temperatures.  相似文献   

17.
Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial β-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.  相似文献   

18.
Summary A new analytical procedure for total carbon dioxide in seawater was developed: a capillary-type isotachophoresis which applied a tubular microporous PTFE membrane as a preliminary enrichment was used. Carbon dioxide was generated by adding sulfuric acid to seawater samples, permeated through a tubular microporous PTFE membrane and dissolved in sodium hydroxide solution for the separation from large amounts of coexisting anions, such as chloride and sulfate ions. A linear working curve was obtained for artificial seawater samples containing up to 40 mg/l of total carbon dioxide. The proposed method was applied to the determination of total carbon dioxide in surface and bottom seawater samples. Concentrations of the total of free carbon dioxide and carbonic acid, hydrogencarbonate and carbonate ions in these samples were calculated from the concentration of total carbon dioxide, temperature, pH and salinity of samples measured in situ.
Bestimmung von Gesamtkohlendioxid in Meereswasser durch Capillar-Isotachophorese
  相似文献   

19.
Low concentrations of carbon dioxide in gases can be determined by leading the gas over circulating water and measuring the conductivity.The method can be extended to the determination of the carbonic acid content of water by means of another closed circuit, of air, which is blown through the water sample.Concentrations of the order of 0.0001% in inert gases and 1 p.p.b. in water can be determined with reasonable accuracy.  相似文献   

20.
Zymomonas mobilis CP4(pZB5) is a recombinant bacterium that can produce ethanol from both xylose and glucose. The ethanol-producing efficiency of this organism is substantially impeded by toxic substances present in pretreated hydrolyzates or solid biomass substrates. Acetic acid and furfural (a pentose degradation product) are highly toxic to this organism at levels envisioned for a pretreated-hardwood liquid hydrolyzate. In addition, lignin degradation products and 5-hydroxymethylfurfural (a hexose degradation product) have a moderately toxic effect on the organism. Of the compounds studied, organic acids and aldehydes were found to be more inhibitory than lignin acids or the one alkaloid studied. Acetone:water and methanol extracts of solid biomass samples from red oak, white oak, and yellow poplar are toxic toZymomonas cell growth and ethanol production, with the extracts from white oak being the most toxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号