首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper is focused on the use of the Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) for studying thin polymer films at interfaces. When forming a polymer film on a metallic substrate, for instance by spin-coating, the characterization of the polymeric layer becomes very difficult given the small amount of matter deposited and also because of the contact with the metal. Among the techniques well adapted to surface and interface analyses, the PM-IRRAS spectroscopy represents an excellent tool to probe ultra-thin films. Different systems have been selected in this study such as polyamides (PA) and ethylene-co-vinyl acetate (EVA) nanofilms spin-coated onto chemically controlled surfaces (i.e. thiol self-assembled monloayers grafted onto gold coated glass slides). PM-IRRAS spectroscopy allowed us to characterize the polymer anisotropy (chains orientation and conformation), to suggest a model for chain organization at the polymer/substrate interface, and to calculate the orientation angles. Moreover, we were able to determine, by using PM-IRRAS, the degree of crystallinity of PA and EVA films of nanometric dimensions without any calibration procedure needed by other techniques.  相似文献   

2.
The solvent-induced film structure of poly(n-vinyl carbazole) (PVK) thin films on indium tin oxide (ITO)-coated glass was examined. PVK thin films were prepared via spin-coating using five different solvents. We investigated the relationship between the solvent characteristics and film properties, including surface roughness and structure, film thickness, and density. The spin-coated polymer thin films are not in thermodynamic equilibrium; rather, the film properties are affected by the dynamics of the spin-coating process. We found that water present in tetrahydrofuran (THF) induces dewetting of PVK films during the spin-coating process. Solvents with a high evaporation rate lead to high surface roughness due to Marangoni convection. The results show that the surface roughness and structure of the films are dominated by the dynamics of the film formation process, rather than thermodynamic interactions between the polymer and solvents.  相似文献   

3.
Two-dimensional surface properties of PEO-PPO-PEO triblock copolymer film (Mol.Wt. 2800) in the absence and presence of Tyr-Phe dipeptide, Val-Tyr-Val tripeptide, sodium dodecylsulfate and stearic acid have been investigated for the first time at the air/water interface using Langmuir film balance technique. It is observed that the above polymer forms fairly stable film at the air/water interface. There are no significant changes observed in the surface pressure-area (π-A) isotherms of polymer in the presence of SDS. However, more expanded film was formed in presence of SDS since the solubility of the polymer is more in SDS and the polymer network is disturbed in presence of SDS, which results in the increase in surface area of the polymer films. In the presence of dipeptide and tripeptide, the surface area of the polymer film decreased with a slight increase in the surface pressure indicating the binding of these peptides to polymer, which enhances the stability of the polymer film. Thermodynamic studies on the change in surface area (ΔA) and excess free energy of mixing (ΔG(mix)(E)) associated with the formation of the mixed film suggest the occurrence of a thermodynamically unstable mixed film. The presence of SDS slightly decreases the formation of mixed film of stearic acid with triblock copolymer and peptides due to the solubilization of these compounds in SDS. However, the hydrophobicity of the polymer films increases in the presence of stearic acid, leading to the increase in surface pressure. The positive deviation of ΔA and the positive ΔG(mix)(E) values show the non-ideality and incompatibility of thermodynamically unstable mixed films. The thermodynamic results suggest that the stability and compatibility of the polymer, peptides and their mixed films with stearic acid in the presence of SDS are decreased, which is in good agreement with the results obtained for other polymeric systems.  相似文献   

4.
高分子共混物梯度相结构形成过程中的界面效应   总被引:5,自引:0,他引:5  
通过在高分子共混物内部引入不同的第三相界面,系统地研究了退火热处理条件下该界面对于共混物梯度相形态形成的影响.对具有一定初始粒径的共混物体系或初始近似为均相的共混体系,在第三相界面的诱导下,均能形成梯度相形态.探讨了诱导界面间距与体系相结构的关系.结果表明,当两个诱导界面间距小于所生成梯度层厚度的两倍时,梯度结构趋于交叠.继续减小诱导界面间距,则梯度结构趋于消失,诱导界面间共混物中分散相粒子快速长大,界面的诱导作用遍布整个样片,证实了我们所提出的“高分子共混物中二维条件下界面诱导加速分散相粒子粗化凝聚”的结论.  相似文献   

5.
Functionalized alkanethiols have been self-assembled on gold to modify the wetting properties of the surface and promote or hinder the adsorption of block copolymers containing both hydrophobic and hydrophilic blocks. X-ray photoelectron spectroscopy (XPS) studies of spin-coated polyethylene-block-poly(ethylene oxide) (PE-b-PEO) copolymers on 16-mercaptohexadecanoic acid (MHDA)-, octadecanethiol (ODT)-, and 1H,1H,2H,2H-perfluorodecanethiol (PFDT)-covered surfaces have been performed. In the case of an 80 wt % PEO block copolymer, spin-coating on a gold surface precovered with MHDA results in a polymer film thick enough to completely attenuate Au 4f photoelectrons; spin-coating on the more hydrophobic ODT and PFDT monolayers leads to significantly thinner polymer films and incomplete attenuation of the gold photoelectrons. The opposite results are observed when a 20 wt % PEO block copolymer is used. Angle-resolved XPS studies of the 80 wt % PEO block copolymer spin-coated onto an MHDA-covered surface indicate that the PE blocks of the polymer segregate to the near-surface region, oriented away from the hydrophilic carboxylic acid tails of the monolayers; the surface concentration of PE is further enhanced by annealing at 90 degrees C. Microcontact printing and dip-pen nanolithography have been used to pattern gold surfaces with MHDA, and the surfaces have been backfilled with ODT or PFDT, such that the unpatterned regions of the surface are covered with hydrophobic monolayers. In the case of backfilling with PFDT, spin-coating the 80 wt % PEO copolymer onto these patterned surfaces and subsequent annealing results in the block copolymer preferentially adsorbing on the MHDA-covered regions and forming well-defined patterns that mimic the MHDA pattern, as determined by scanning electron microscopy and atomic force microscopy. Significantly worse patterning, characterized by micron-sized polymer droplets, results when the surface is backfilled with ODT instead of PFDT. Using PFDT and MHDA, polymer features having widths as small as 500 nm have been formed. These studies demonstrate a novel method to pattern block copolymers with nanoscale resolution.  相似文献   

6.
利用浸泡和旋涂静电吸附自组装技术制备了含有偶氮生色团的聚电解质薄膜,比较了两种方法在自组装膜生长机理、膜结构以及膜光学性能方面的差异.利用紫外光谱和椭偏仪检测自组装膜的生长情况,利用原子力显微镜对膜表面结构进行了表征,并用偏振激光在膜表面进行了写光栅实验.结果表明,采用浸泡法和旋涂法都可以制备出表面光滑均匀的含偶氮生色团的聚电解质自组装膜.但是浸泡法自组装膜的生长速度要比旋涂法快.在自组装膜厚度较小的情况下,旋涂法得到的自组装膜可以写出明显的光栅而浸泡法不可以.随着自组装膜厚度的增加,两种方法得到的自组装膜都可以写出明显的光栅.这些结果说明浸泡法自组装膜内部聚电解质分子的层间穿插比较严重,而旋涂法自组装膜内分子穿插要弱得多.  相似文献   

7.
Polyelectrolyte spin assembly (PSA) of multilayers is a sequential process featuring adsorption of oppositely charged polyelectrolytes from dilute solutions undergoing spin-coating flow. Here, we report on the dependence of PSA multilayer buildup of poly(sodium 4-styrenesulfonate) and poly(allylamine hydrochloride) on solution ionic strength and spin speed. We observed that at a given spin speed, the PSA coating growth rate (thickness/bilayer) and polymer surface coverage shows a nonmonotonic dependence on salt concentration, first increasing and then decreasing with increasing solution ionic strength. This is argued to be a manifestation of two competing mechanisms responsible for the layer formation. At low salt concentrations, the electrostatic interactions control the multilayer assembly process, while at high salt concentrations it is dominated by shear flow. We explain this nonmonotonic behavior in the framework of a Flory-like theory of multilayer formation from polyelectrolyte solution under shear flow. Additionally, the PSA process led to multilayer coatings with a radial dependence on thickness at lower spin speed in the shear-dominated regime. On increasing spin speed, such radial dependence subsided, eventually leading to uniform coatings by planarization. The surface topography of the multilayered coatings adsorbed at salt concentration less than 0.1 M was flat and featureless for all studied spin speeds. Unique morphological features in the films were formed at salt concentration higher than 0.1 M, the size of which depended on the spin speed and solution ionic strength.  相似文献   

8.
A method for the fabrication of polymeric thin-film transistors (TFTs) by lamination is described. Poly(dimethylsiloxane) stamps were used to delaminate thin films of semiconducting polymers from silicon wafers coated with a self-assembled monolayer (SAM) formed from octyltrichlorosilane. These supported films were laminated onto electrode structures to form coplanar TFTs. The fabrication process was used to make TFTs with poly(3-hexylthiophene), P3HT, and poly[5,5'-bis(3-dodecyl-2-thienyl)-2,2'-bithiophene], PQT-12. TFTs, where these polymers were laminated onto gate dielectrics coated with SAMs from octyltrichlorosilane, had effective field-effect mobilities of 0.03 and 0.005 cm2/(V s), respectively. TFTs where PQT-12 was laminated onto gate dielectrics that were not coated with a SAM also had mobility of 0.03 cm2/(V s). In contrast, TFTs fabricated by spin-coating PQT-12 onto the same structure had mobilities ranging from 10-3 to 10-4 cm2/(V s). These results suggest that the lower mobilities of polymer TFTs made with hydrophilic gate dielectrics are caused by molecular ordering in the semiconducting film rather than electronic effects of dipolar groups at the interface.  相似文献   

9.
Chemical deposition of ultrafine gold and palladium particles into poly(3,4-ethylenedioxythiophene) matrix has yielded the metal-containing polymer composites. Their structure has been studied as affected by duration of reduced polymer immersion into the metal salts solution, and by concentration of the latter. Morphology features of the composite films (size and concentration of metal particles) have been elucidated by scanning and transmission electron microscopy. The mixed clusters have been formed predominantly in the course of preparation of bimetal composite films via sequential deposition of gold and palladium; the isolated palladium clusters nucleate slower due to the gold-palladium alloys formation. Longer deposition of the metals leads to increase in the nanoparticles size and their concentration in the composite. Properties of the prepared materials have been demonstrated using the model electrochemical reactions.  相似文献   

10.
Polymer solar cells(PSCs) were fabricated by combining a diketopyrrolopyrrole-based terpolymer(PTBT-HTID-DPP) as the electron donor, and [6,6]-phenyl C61 butyric acid methyl ester(PC61BM) as the electron acceptor, and the power conversion efficiency(PCE) of 4.31% has been achieved under AM 1.5 G(100 m W cm-2) illumination condition via optimizing the polymer/PC61BM ratio, the variety of solvent and the spin-coating speed. The impact of the spin-coating speed on the photovoltaic performance of the PSCs has been investigated by revealing the effects of the spin-coating speed on the morphology and the absorption spectra of the polymer/PC61BM blend films. When the thickness of the blend films are adjusted by spin-coating a fixed concentration with different spin-coating speeds, the blend film prepared at a lower spin-coating speed shows a stronger absorption per unit thickness, and the correspond device shows higher IPCE value in the longer-wavelength region. Under the conditions of similar thickness, the blend film prepared at a lower spin-coating speed forms a more uniform microphase separation and smaller domain size which leads to a higher absorption intensity per unit thickness of the blend film in long wavenumber band, a larger short-circuit current density(Jsc) and a higher power conversion efficiency(PCE) of the PSC device. Noteworthily, it was found that spin-coating speed is not only a way to control the thickness of active layer but also an influencing factor on morphology and photovoltaic performance for the diketopyrrolopyrrole-based terpolymer.  相似文献   

11.
用匀胶机通过溶液铸膜方法在硅片和铝箔基板上分别制备具有不同厚度的聚(ε-己内酯)(PCL)薄膜. 通过原子力显微镜(AFM)和偏光衰减全反射傅里叶红外光谱(ATR-FTIR)对薄膜中PCL的结晶形貌、 片晶生长方式及分子链取向进行了研究. AFM结果表明, 在200 nm或更厚的薄膜中, PCL主要以侧立(edge-on)片晶的方式生长; 对于厚度小于200 nm的薄膜, PCL片晶更倾向于以平躺(flat-on)的方式生长. 这种片晶生长方式的改变在硅片和铝箔基板上都表现出同样的倾向. 此外, 在15 nm或更薄的薄膜中, PCL结晶由通常的球晶结构变为树枝状晶体. 偏光ATR-FTIR结果表明, 当膜厚小于200 nm时, 薄膜结晶中PCL分子链沿垂直于基板表面方向取向, 并且膜越薄, 取向程度越高, 与AFM的观测结果一致.  相似文献   

12.
The composition and gross structural features of plasma polymer films prepared by inductively coupled RF plasmas excited in pentafluorobenzene were investigated by ESCA as a function of the operating parameters. The rate of film deposition is dependent on the W/FM parameter and on site of deposition. The polymer formed in the glow region shows only small variations in structure as a function of power and pressure. Polymer films deposited in the regions away from the site of primary excitation typically have a higher fluorine content than those formed in the coil region; the stoichiometry for the latter is comparable to that of the starting material.  相似文献   

13.
Thin films of fluids are playing a leading role in countless natural and industrial processes. Here we study the stability and dewetting dynamics of viscoelastic polymer thin films. The dewetting of polystyrene close to the glass transition reveals unexpected features: asymmetric rims collecting the dewetted liquid and logarithmic growth laws that we explain by considering the nonlinear velocity dependence of friction at the fluid/solid interface and by evoking residual stresses within the film. Systematically varying the time so that films were stored below the glass-transition temperature, we studied simultaneously the probability for film rupture and the dewetting dynamics at early stages. Both approaches proved independently the significance of residual stresses arising from the fast solvent evaporation associated with the spin-coating process. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3022–3030, 2006  相似文献   

14.
An amphiphilic barbituric acid derivative was found to form stable monolayers showing a clear phase transition at the air/water interface. It is interesting to find that the deposited Langmuir-Blodgett (LB) films of the compound showed circular dichroism (CD) although the molecule itself was achiral. AFM measurements on the transferred one-layer LB film revealed that spiral nanoarchitectures were formed. It was further found that the supramolecular chirality of the LB films was related to symmetry breaking at the interface. Hydrogen bonding and the pi-pi stacking between the neighboring molecules resulted in chiral fibers which formed the spiral structures. To the best of our knowledge, this is the first report on the chirality of the molecular assemblies and spiral nanostructures formed through the air/water interface by achiral molecules.  相似文献   

15.
The interaction of polyvinyl alcohol (PVA) with lecithin films at the air/water and xylene/water interfaces was studied at pH 3, the isoelectric point of lecithin. Surface and interfacial tension measurements and electro-phoretie mobility data showed that PVA either replaces the lecithin molecules or becomes coadsorbed with it at the interface. This mixed film has no elasticity and very low interfacial viscosity. However, coalescence rate measurements showed that the emulsion formed by the polymer* lecithin is more stable than that formed with either polymer or lecithin alone. The enhanced stability by the PVA-lecithin mixed film was attributed to steric interaction produced by the adsorbed polymer.  相似文献   

16.
A novel flexible free-standing films of polyvinyl alcohol (PVA)/silica polymer network dispersed cholesteric liquid crystals (CLC) have been prepared by the sol-gel process. In the hydrolysis of silicon alkoxides tetraethoxysilane (TEOS) processes, the silica having -OH with the -OH groups on PVA formed polymer networks with Si-O-C bonds by dehydration. The cholesteric liquid crystals were incorporated into the networks. The free-standing films were obtained by the spin-coating method. In order to improve the compatibility and microstructure of the cholesteric liquid crystals with PVA/silica polymer networks, the amphiphilic compound of hexadecyl trimethyl ammonium bromide (HDTMA) was introduced into the forming film solutions. Effects of the different ratios of raw materials on the structure of films were investigated. The microscopic morphology of free-standing films and the uniform dispersion of CLCs in the films have been characterized by polarizing optical microscopy (POM), the field emission scanning electron microscope (FESEM), Fourier transform infrared (FT-IR) spectrometer and atomic force microscope (AFM). The free-standing films exhibiting excellent CLC droplets dispersion, mechanical stability, and good flexibility could be useful for flexible displays, switchable optical elements and smart windows.  相似文献   

17.
Adsorbed films of proteins at the air-water interface have been imaged using Brewster angle microscopy (BAM). The proteins beta-lactoglobulin (beta-L) and ovalbumin (OA) were studied at a range of protein concentrations and surface ages at 25.0 degrees C and two pH values (7 and 5) in a Langmuir trough. The adsorbed films were periodically subjected to compression and expansion cycles such that the film area was typically varied between 125% and 50% of the original film area. With beta-L on its own, no structural changes were observable at pH 7. When a low-area fraction (less than 0.01%) of 20 mum polystyrene latex particles was spread at the interface before adsorption of beta-L, the particles became randomly distributed throughout the interface, but after protein adsorption and compression/expansion, the particles highlighted notable structural features not visible in their absence. Such features included the appearance of long (several hundred micrometers or more) folds and cracks in the films, generally oriented at right angles to the direction of compression, and also aggregates of protein and/or particles. Such structuring was more visible the longer the film was aged or at higher initial protein concentrations for shorter adsorption times. At pH 5, close to the isoelectric pH of beta-L, such features were just noticeable in the absence of particles but were much more pronounced than at pH 7 in the presence of particles. Similar experiments with OA revealed even more pronounced structural features, both in the absence and presence of particles, particularly at pH 5 (close to the isoelectric pH of OA also), producing striking stripelike and meshlike domains. Changes in the dilatational elasticity of the films could be correlated with the variations in the structural integrity of the films as observed via BAM. The results indicate that interfacial area changes of this type, typical of those that occur in food colloid processing, will lead to highly inhomogeneous adsorbed protein layers, with implications for the stability of the corresponding foams and emulsions stabilized by such films. Overall, the experimental results are in broad agreement with the sorts of trends predicted by earlier computer simulations of protein films subjected to such compression and expansion.  相似文献   

18.
Strong hydrogen bonding and pi-pi stacking between 1-pyrylphosphonic acid (PYPA) molecules were exploited to create self-assembled two-dimensional supramolecular structures. Polycrystalline films of these laminate crystalline PYPA bilayers were easily deposited onto the solid supports through a simple spin-coating technique. Atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption, and fluorescence spectroscopy reveal that processing parameters, such as solvent, concentration, and surface of the substrate, are critical factors in determining the final morphology of the stacked film. Robust laminate structures could be obtained only when short alkyl chain protic solvents (methanol or ethanol) and a nonhydrophobic substrate surface were used. Polycrystalline films were formed through the nucleation and growth of PYPA molecules into laminate structures at the air/solvent interface before they land on the substrate during the spin-coating process. These films possess good mechanical properties and were easily transferred onto a SiO2/Si substrate that was patterned with Au electrodes without breaking their crystalline structures. The successful transfer of the laminate crystals allows us to probe their electrical properties through a field effect transistor device. A gating effect on the charge transport of the stacked films indicates that PYPA laminate crystal possesses p-typed semiconductor characteristics.  相似文献   

19.
We study interfacial properties of rigid-rod-like poly(n-hexyl isocyanate) (PHIC), flexible poly(vinyl acetate) (PVAc), and mixed films of PHIC and PVAc spread at the air-water interface as a function of the molar fraction of PHIC by surface pressure measurements and fluorescence microscopy. From the plots of the experimental mean area of the mixed polymer films at a constant surface pressure as a function of the molar fraction of PHIC in the mixed films, the binary mixtures of PHIC/PVAc were concluded to be compatible at the air-water interface. This means that the hydrophobic hexyl group of PHIC takes a horizontal orientation to the air-water interface rather than a perpendicular one, leading to PHIC and PVAc having the same interfacial orientation. Compatibility of the binary mixtures of PHIC/PVAc at the air-water interface is also confirmed by their fluorescence microscopic images, since PHIC proves to be inhomogeneous and PVAc is homogeneous with the aid of a fluorescence probe, respectively.  相似文献   

20.
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 ± 5)%, (55 ± 5)% or (75 ± 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 ± 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号