首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose

The use of diffusion-weighted magnetic resonance imaging (DW-MRI) as a surrogate biomarker of response in preclinical studies is increasing. However, before a biomarker can be reliably employed to assess treatment response, the reproducibility of the technique must be established. There is a paucity of literature that quantifies the reproducibility of DW-MRI in preclinical studies; thus, the purpose of this study was to investigate DW-MRI reproducibility in a murine model of HER2 + breast cancer.

Materials and methods

Test–Retest DW-MRI scans separated by approximately six hours were acquired from eleven athymic female mice with HER2 + xenografts using a pulsed gradient spin echo diffusion-weighted sequence with three b values [150, 500, and 800 s/mm2]. Reproducibility was assessed for the mean apparent diffusion coefficient (ADC) from tumor and muscle tissue regions.

Results

The threshold to reflect a change in tumor physiology in a cohort of mice is defined by the 95% confidence interval (CI), which was ± 0.0972 × 10- 3 mm2/s (± 11.8%) for mean tumor ADC. The repeatability coefficient defines this threshold for an individual mouse, which was ± 0.273 × 10- 3 mm2/s. The 95% CI and repeatability coefficient for mean ADC of muscle tissue were ± 0.0949 × 10- 3 mm2/s (± 8.30%) and ± 0.266 × 10- 3 mm2/s, respectively.

Conclusions

Mean ADC of tumors is reproducible and appropriate for detecting treatment-induced changes on both an individual and mouse cohort basis.  相似文献   

2.

Purpose

To retrospectively identify apparent diffusion coefficient (ADC) values of pediatric abdominal mass lesions, to determine whether measured ADC of the lesions and signal intensity on diffusion-weighted (DW) images allow discrimination between benign and malignant mass lesions.

Materials and Methods

Approval for this retrospective study was obtained from the institutional review board. Children with abdominal mass lesions, who were examined by DW magnetic resonance imaging (MRI) were included in this study. DW MR images were obtained in the axial plane by using a non breath-hold single-shot spin-echo sequence on a 1.5-T MR scanner. ADCs were calculated for each lesion. ADC values were compared with Mann–Whitney U test. Receiver operating characteristic curve analysis was performed to determine cut-off values for ADC. The results of visual assessment on b800 images and ADC map images were compared with chi-square test.

Results

Thirty-one abdominal mass lesions (16 benign, 15 malignant) in 26 patients (15 girls, 11 boys, ranging from 2 days to 17 years with 6.9 years mean) underwent MRI. Benign lesions had significantly higher ADC values than malignant ones (P<.001). The mean ADCs of malignant lesions were 0.84±1.7×10−3 mm2/s, while the mean ADCs of the benign ones were 2.28±1.00×10−3 mm2/s. With respect to cutoff values of ADC: 1.11×10−3 mm2/s, sensitivity and negative predictive values were 100%, specificity was 78.6% and positive predictive value was 83.3%. For b800 and ADC map images, there were statistically significant differences on visual assessment. All malignant lesions had variable degrees of high signal intensity whereas eight of the 16 benign ones had low signal intensities on b800 images (P<.001). On ADC map images, all malignant lesions were hypointense and most of the benign ones (n=11, 68.7%) were hyperintense (P<.001).

Conclusion

DW imaging can be used for reliable discrimination of benign and malignant pediatric abdominal mass lesions based on considerable differences in the ADC values and signal intensity changes.  相似文献   

3.

Purpose

To present diffusion and perfusion magnetic resonance imaging (MRI) characteristics of focal nodular hyperplasia (FNH) of the liver.

Materials and Methods

Thirty-five patients with 52 FNHs (21 were pathologically-confirmed) underwent MRI at 1.5-T device. MR diffusion [diffusion-weighted imaging (DWI)] was performed using a free-breathing single-shot, spin-echo, echo-planar sequence with b gradient factor value of 500 s/mm². MR perfusion [perfusion-weighted imaging (PWI)] consisted of a 3D free-breathing LAVA sequence repeated up to 5 minutes after injection of 7 mL Gd-BOPTA (MultiHance, Bracco, Italy) and 20 mL saline flush at a flow rate of 4 mL/s. Apparent diffusion coefficient (ADC) and time-signal intensity curve (TSIC) were obtained for both normal liver and each FNH by two reviewers in conference; maximum enhancement (ME) percentage, time to peak enhancement (TTP), and maximal slope (MS) were also calculated.

Results

On DWI mean ADC value was 1.624×10− 3 mm2/s for normal liver and 1.629×10− 3 mm2/s for FNH. ADC value for each FNH and the normal liver was not statistically different (P= .936). On PWI, TSIC-Type 1 (quick and marked enhancement and quick decay followed by slowly decaying) was observed in all 52 FNHs, and TSIC-Type 2 (fast enhancement followed by slowly decaying plateau) in all normal livers. The mean ME, TTP and MS values were significantly different for FNH and normal liver (P= .005).

Conclusion

FNHs of the liver showed typical diffusion and perfusion MRI characteristics in all cases. On the ADC map, we could get similar value between the FNHs and the background parenchyma. On the perfusion imaging, FNHs showed a different pattern distinguished from the background liver.  相似文献   

4.

Purpose

To prospectively evaluate diffusion-weighted (DW) magnetic resonance (MR) imaging for differentiation of postobstructive consolidation from centrally located lung carcinomas by using apparent diffusion coefficients (ADCs).

Materials and Methods

An institutional review board approved this study; informed consent was obtained from patients. Forty-nine consecutive patients (3 women, 46 men; mean age, 63.6 years; age range, 42–85 years) with lung carcinoma underwent DW MR imaging. Forty patients had central and nine patients had peripheral lung carcinomas. ADC of each lung carcinoma was calculated from DW MR images obtained with two different b values (0, 1000 s/mm2).In the final study group including 27 patients with central lung carcinoma accompanying distal lung consolidation (mean age, 67.2 years; 3 women, 24 men), ADCs of lung carcinomas were statistically compared among cytologic/histologic types and accompanying postobstructive consolidations. Unpaired t test was used for measurable variables with normal distribution, and Kruskal–Wallis variance analysis and Mann–Whitney U tests were used for the measurable variables without normal distribution.

Results

There was no significant difference between mean ADC values of all types of carcinomas (P=.302) and also between mean ADC values of central (1.91 ± 0.7×10−3 mm2/s) and peripheral carcinomas (1.58 ± 0. 6×10−3 mm2/s) (P=.224). The mean ADC value for the masses of central lung carcinoma with postobstructive consolidations was 1.83 ± 0.75×10−3 mm2/s, and for consolidation was 2.50 ± 0.76×10−3 mm2/s. ADC of central carcinoma masses was significantly lower than that of postobstructive consolidations (P=.003).

Conclusions

ADC values of central lung carcinoma masses appear to be lower than accompanying postobstructive consolidations. ADC values could be considered useful as a differentiating parameter among central lung carcinomas and accompanying postobstructive consolidations.  相似文献   

5.

Purpose

The objective of this study was to evaluate diffusion anisotropy of the breast parenchyma and assess the range and repeatability of diffusion tensor imaging (DTI) parameters in normal breast tissue.

Materials and Methods

The study was approved by our institutional review board and included 12 healthy females (median age, 36 years). Diffusion tensor imaging was performed at 1.5 T using a diffusion-weighted echo planar imaging sequence. Diffusion tensor imaging parameters including tensor eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured for anterior, central and posterior breast regions.

Results

Mean normal breast DTI measures were λ1=2.51×10−3 mm2/s, λ2=1.89×10−3 mm2/s, λ3=1.39×10−3 mm2/s, ADC=1.95±0.24×10−3 mm2/s and FA=0.29±0.05 for b=600 s/mm2. Significant regional differences were observed for both FA and ADC (P<.05), with higher ADC in the central breast and higher FA in the posterior breast. Comparison of DTI values calculated using b=0, 600 s/mm2 vs. b=0, 1000 s/mm2, showed significant differences in ADC (P<.001), but not FA. Repeatability assessment produced within-subject coefficient of variations of 4.5% for ADC and 11.4% for FA measures.

Conclusion

This study demonstrates anisotropy of water diffusion in normal breast tissue and establishes a normative range of breast FA values. Attention to the influence of breast region and b value on breast DTI measurements may be important for clinical interpretation and standardization of techniques.  相似文献   

6.

Purpose

To predict malignancy of mediastinal lymphadenopathy with diffusion-weighted imaging.

Material and methods

A prospective study was conducted on 35 patients with mediastinal lymphadenopathy (28 malignant and seven benign nodes). They underwent echoplanar diffusion-weighted magnetic resonance imaging of the mediastinum with b-factors of 0, 300 and 600 s/mm2. The apparent diffusion coefficient (ADC) values of the mediastinal lymph nodes were calculated. The ADC values were correlated with the biopsy results and statistical analysis was done. A value of P<.05 was considered significant.

Results

The mean ADC value of malignant mediastinal lymphadenopathy (1.06±0.3×10−3 mm2/s) was significantly lower (P=.001) than that of benign lymphadenopathy (2.39±0.7×10−3 mm2/s). There was an insignificant difference in the ADC values between metastatic and lymphomatous mediastinal lymph nodes (P=.32) as well as within benign nodes (P=.07). When an ADC value of 1.85×10−3 mm2/s was used as a threshold value for differentiating malignant mediastinal nodes from benign nodes, the best results were obtained with an accuracy of 83.9%, a sensitivity of 96.4%, a specificity of 71.4%, a negative predictive value of 95.2% and a positive predictive value of 77.1%. The area under the curve was 0.98.

Conclusion

Diffusion weighted magnetic resonance imaging is a promising noninvasive imaging modality that can be used for characterization of mediastinal lymphadenopathy and differentiation of malignant from benign mediastinal lymph nodes.  相似文献   

7.

Purpose

To evaluate the diagnostic performance of an apparent diffusion coefficient (ADC) and quantitative kinetic parameters in patients with newly diagnosed breast cancer.

Materials and Methods

We enrolled 169 lesions in 89 patients with breast cancer who underwent dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). Comparisons between benign and malignant lesions were performed for lesion type (mass or nonmass-like enhancement), size (≥ 1 cm or < 1 cm), ADC, kinetic parameters and the presence of a US correlate.

Results

There were 63 benign and 106 malignant lesions. The mean size and initial peak enhancement of the benign lesions were significantly lower than those of malignant lesions (P < 0.001 for both). The ADC of the benign lesions was significantly higher than that of malignant lesions (1.42 × 10− 3 mm2/sec vs. 1.04 × 10− 3 mm2/sec; P < 0.001). The area under the receiver operating characteristic curve (AUC) for predicting malignancy was 0.87 for the combined parameters of size, ADC, and initial peak enhancement, which was higher than those of each parameter.

Conclusions

Combination of quantitative kinetic parameters and ADC showed higher diagnostic performance for predicting malignancy than each parameter alone for the evaluation of patients with breast cancer.  相似文献   

8.

Purpose

The objective of this paper was to investigate the value of apparent diffusion coefficients (ADCs) for differential diagnosis among solid pancreatic masses using respiratory triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique (RT-IR-DWI) at 3.0 T.

Materials and Methods

20 normal volunteers and 72 patients (Pancreatic ductal adenocarcinoma [PDCA, n = 30], mass-forming pancreatitis [MFP, n = 15], solid pseudopapillary neoplasm [SPN, n = 12], and pancreatic neuroendocrine tumor[PNET, n = 15]) underwent RT-IR-DWI (b values: 0 and 600 s/mm2) at 3.0 T. Results were correlated with histopathologic data and follow-up imaging. ADC values among different types of pancreatic tissue were statistically analyzed and compared.

Results

Statistical difference was noticed in ADC values among normal pancreas, MFP, PDCA, SPN and PNET by ANOVA (p < .001). Normal pancreas had the highest ADC value, then followed by PNET, PDCA, MFP and SPN. There was noticeable statistical difference in ADC values among PDCA, MFP and normal pancreas by Least Significant Difference (LSD) (p < .001). ADC of SPN was statistically lower than that of PNET (p = 0.1800 × 10− 4), PDCA (p = 0.0300 × 10− 4) and normal pancreas (p = 0.0007 × 10− 4). ADC of PNET was statistically lower than that of normal pancreas (p = 0.0360) and higher than that of MFP (p = 9.3000 × 10− 4).

Conclusions

ADC measurements using RT-IR-DWI at 3.0 T may aid to disclose the histopathological pattern of normal pancreas and solid pancreatic masses, which may be helpful in characterizing solid pancreatic lesions.  相似文献   

9.

Objectives

Diffusion-weighted imaging with background body signal suppression (DWIBS) provides both qualitative and quantitative imaging of breast lesions and are usually performed before contrast material injection (CMI). This study aims to assess whether the administration of gadolinium significantly affects DWIBS imaging.

Methods

200 patients were prospectively evaluated by MRI with STIR, TSE-T2, pre-CMI DWIBS, contrast enhanced THRIVE-T1 and post-CMI DWIBS sequences. Pre and post-CMI DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤ 1.44 × 10- 3 mm2/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated for both sequences and represented by ROC analysis. Pre and post-CMI ADC values were compared by using the paired t test.

Results

In 150/200 (59%) patients, pre and post-CMI DWIBS indicated the presence of breast lesions, 53 (35%) with ADC values of > 1.44 × 10- 3 mm2/s and 97 (65%) with ADC ≤ 1.44 × 10- 3 mm2/s. Pre-CMI and post-DWIBS sequences obtained the same sensitivity, specificity, DA, PPV and NPV values of 97%, 83%, 89%, 79% and 98%. The mean ADC value of benign lesions was 1.831 ± 0.18 × 10- 3 mm2/s before and 1.828 ± 0.18 × 10- 3 mm2/s after CMI. The mean ADC value of the malignant lesions was 1.146 ± 0.16 × 10- 3 mm2/s before and 1.144 ± 0.16 × 10- 3 mm2/s after CMI. No significant difference was found between pre and post CMI ADC values (p > 0.05).

Conclusion

DWIBS imaging is not influenced by CMI. Breast MR protocol could be modified by placing DWIBS after dynamic contrast enhanced sequences in order to maximize patient cooperation.  相似文献   

10.

Objective

To evaluate the correlation between findings from diffusion weighted imaging (DWI) and microvascular density (MVD) measurements in VX2 liver tumors after transarterial embolization ablation (TEA).

Materials and Methods

Eighteen New Zealand white rabbits were used in this study. VX2 tumor cells were implanted in livers by percutaneous puncture under computed tomography (CT) guidance. Two weeks later, all rabbits underwent conventional magnetic resonance imaging (MRI) (T1 and T2 imaging), DWI, (b = 100, 600, and 1000 s/mm2) and TEA. MRI was performed again1 week after TEA. Liver tissue was then harvested and processed for hematoxylin and eosin (H&E) staining and immunohistochemical staining for CD31to determine MVD.

Results

VX2 liver tumors were successfully established in all 18 rabbits. Optimal contrast was achieved with a b value of 600 s/mm2.The maximum pre-operative apparent diffusion coefficient (ADC)difference value was 0.28 × 10− 3 ± 0.10 × 10− 3 mm2/s, and was significantly different (P < 0.001) from the maximum postoperative ADCdifference value of 0.47 × 10− 3 ± 0.10 × 10− 3 mm2/s. However, the mean ADC value for the entire tumor was not significantly correlated with MVD (r = 0.221, P = 0.379), nor was the ADC value for the regions of viable tumor (r = − 0.044, P = 0.862). However, the maximum postoperative ADCdifference value was positively correlated with MVD(r = 0.606, F = 12.247, P = 0.003).

Conclusion

DWI is effective to evaluate the therapeutic efficacy of TEA. The maximum ADCdifference offers a promising new method to noninvasively assess tumor angiogenesis.  相似文献   

11.

Purpose

To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles.

Materials and Methods

Diffusion-weighted images (b values in the range of 0–750 s/mm2 at increments of 50 s/mm2) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b-value logarithmic plots, ADCb0–50 (b values=0 and 50 s/mm2) reflected diffusion and perfusion, while ADCb50–750 (b values in the range of 50–750 s/mm2 at increments of 50 s/mm2) approximated the true diffusion coefficient. Moreover, to evaluate whether this b-value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion.

Results

ADCb0–50 and ADCb50–750 were found to be 2.64×10–3 and 1.44×10–3 mm2/s in the ankle dorsiflexors, and 3.02×10–3 and 1.49×10–3 mm2/s in the erector spinae muscles, respectively. ADCb0–50 was significantly higher than ADCb50–750 in each muscle (P<.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors (P<.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADCb0–50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6×10–3 mm2/s (P<.01); however, ADCb50–750 showed no significant change.

Conclusion

Based on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.  相似文献   

12.

Objectives

Diffusion imaging represents a new imaging tool for the diagnosis of breast cancer. This study aims to investigate the role of diffusion-weighted MRI with background body signal suppression (DWIBS) for evaluating breast lesions.

Methods

90 patients were prospectively evaluated by MRI with STIR, TSE-T2, contrast enhanced THRIVE-T1 and DWIBS sequences. DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤ 1.44 × 10- 3 mm2/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated.

Results

In 53/90 (59%) patients, DWIBS indicated the presence of breast lesions, 16 (30%) with ADC values of  > 1.44 and 37 (70%) with ADC ≤ 1.44. The comparison with histology showed 25 malignant and 28 benign lesions. DWIBS sequences obtained sensitivity, specificity, DA, PPV and NPV values of 100, 82, 87, 68 and 100%, respectively.

Conclusion

DWIBS can be proposed in the MRI breast protocol representing an accurate diagnostic complement.  相似文献   

13.

Purpose

To assess the feasibility and to optimize imaging parameters of diffusion kurtosis imaging (DKI) in human kidneys.

Methods

The kidneys of ten healthy volunteers were examined on a clinical 3 T MR scanner. For DKI, respiratory triggered EPI sequences were acquired in the coronal plane (3 b-values: 0, 300, 600 s/mm2, 30 diffusion directions). A goodness of fit analysis was performed and the influence of the signal-to-noise ratio (SNR) on the DKI results was evaluated. Region-of-interest (ROI) measurements were performed to determine apparent diffusion coefficient (ADC), fractional anisotropy (FA) and mean kurtosis (MK) of the cortex and the medulla of the kidneys. Intra-observer and inter-observer reproducibility using Bland-Altman plots as well as subjective image quality of DKI were examined and ADC, FA, and MK parameters were compared.

Results

The DKI model fitted better to the experimental data (r = 0.99) with p < 0.05 than the common mono-exponential ADC model (r = 0.96).Calculation of reliable kurtosis parameters in human kidneys requires a minimum SNR of 8.31 on b = 0 s/mm2 images.Corticomedullary differentiation was possible on FA and MK maps. ADC, FA and MK revealed significant differences in medulla (ADC = 2.82 × 10− 3 mm2/s ± 0.25, FA = 0.42 ± 0. 05, MK = 0.78 ± 0.07) and cortex (ADC = 3.60 × 10− 3 mm2/s ± 0.28, FA = 0.18 ± 0.04, MK = 0.94 ± 0.07) with p < 0.001.

Conclusion

Our initial results indicate the feasibility of DKI in the human kidney presuming an adequate SNR. Future studies in patients with kidney diseases are required to determine the value of DKI for functional kidney imaging.  相似文献   

14.

Object

To assess the feasibility of measuring diffusion and perfusion fraction in vertebral bone marrow using the intravoxel incoherent motion (IVIM) approach and to compare two fitting methods, i.e., the non-negative least squares (NNLS) algorithm and the more commonly used Levenberg–Marquardt (LM) non-linear least squares algorithm, for the analysis of IVIM data.

Materials and Methods

MRI experiments were performed on fifteen healthy volunteers, with a diffusion-weighted echo-planar imaging (EPI) sequence at five different b-values (0, 50, 100, 200, 600 s/mm2), in combination with an STIR module to suppress the lipid signal. Diffusion signal decays in the first lumbar vertebra (L1) were fitted to a bi-exponential function using the LM algorithm and further analyzed with the NNLS algorithm to calculate the values of the apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*) and perfusion fraction.

Results

The NNLS analysis revealed two diffusion components only in seven out of fifteen volunteers, with ADC = 0.60 ± 0.09 (10− 3 mm2/s), D* = 28 ± 9 (10− 3 mm2/s) and perfusion fraction = 14% ± 6%. The values obtained by the LM bi-exponential fit were: ADC = 0.45 ± 0.27 (10− 3 mm2/s), D* = 63 ± 145 (10− 3 mm2/s) and perfusion fraction = 27% ± 17%. Furthermore, the LM algorithm yielded values of perfusion fraction in cases where the decay was not bi-exponential, as assessed by NNLS analysis.

Conclusion

The IVIM approach allows for measuring diffusion and perfusion fraction in vertebral bone marrow; its reliability can be improved by using the NNLS, which identifies the diffusion decays that display a bi-exponential behavior.  相似文献   

15.

Purpose

To evaluate which mathematical model (monoexponential, biexponential, statistical, kurtosis) fits best to the diffusion-weighted signal in prostate magnetic resonance imaging (MRI).

Materials and Methods

24 prostate 3-T MRI examinations of young volunteers (YV, n= 8), patients with biopsy proven prostate cancer (PC, n= 8) and an aged matched control group (AC, n= 8) were included. Diffusion-weighted imaging was performed using 11 b-values ranging from 0 to 800 s/mm2.

Results

Monoexponential apparent diffusion coefficient (ADC) values were significantly (P<.001) lower in the peripheral (PZ) zone (1.18±0.16 mm2/s) and the central (CZ) zone (0.73±0.13 mm2/s) of YV compared to AC (PZ 1.92±0.17 mm2/s; CZ 1.35±0.21 mm2/s). In PC ADCmono values (0.61±0.06 mm2/s) were significantly (P<.001) lower than in the peripheral of central zone of AC. Using the statistical analysis (Akaike information criteria) in YV most pixels were best described by the biexponential model (82%), the statistical model, respectively kurtosis (93%) each compared to the monoexponential model. In PC the majority of pixels was best described by the monoexponential model (57%) compared to the biexponential model.

Conclusion

Although a more complex model might provide a better fitting when multiple b-values are used, the monoexponential analyses for ADC calculation in prostate MRI is sufficient to discriminate prostate cancer from normal tissue using b-values ranging from 0 to 800 s/mm2.  相似文献   

16.

Purpose

To evaluate the semiquantitative DCE and quantitative DWI parameters in endometrial cancer, in order to assess the presence of neoplastic tissue and normal myometrium and to ascertain a potential relationship with tumor grade.

Methods and materials

A total of 57 patients with biopsy-proven endometrial adenocarcinoma who underwent MR imaging examination for staging purposes were retrospectively evaluated. Imaging protocol included multiplanar T1- and T2-weighted TSE, DCE T1-weighted (THRIVE; 0, 30, 90 and 120 seconds after intravenous injection of gadolinium) and DWIBS sequences (b values = 0 and 1000 mm2/s). Color perfusion and ADC maps were automatically generated on dedicated software. Relative enhancement (RE, %), maximum enhancement (ME, %), maximum relative enhancement (MRE, %), time to peak (TTP, s) and mean apparent diffusion coefficient (ADC) were calculated by manually drawing a region of interest (ROI) both on the neoplastic tissue and the normal myometrium. Histopathology was used as reference standard.

Results

Histopathological analysis confirmed the presence of endometrial carcinoma in all patients. Neoplastic tissue demonstrated significantly lower (P < 0.001) values of RE (%) 63.92 ± 35.68; ME (%) 864.91 ± 429.54 and MRE (%) 75.97 ± 38.26 as compared to normal myometrium (RE (%) 151.43 ± 55.99; ME (%) 1800.73 ± 721.32; MRE (%) 158.28 ± 54.05). TTP was significantly higher (P < 0.05) in tumor lesion (385.51 ± 1630.27 vs 195.44 ± 78.69). Mean ADC value of neoplastic tissue (775.09 ± ?220.73 × 10− 3 mm2/s) was significantly lower (P < 0.05) than in myometrium (1602.37 ± 378.54 × 10− 3 mm2/s). The analysis of perfusion and diffusion parameters classified according to tumor grades, showed a statistically significant difference only for RE (P = 0.043) and ME (P = 0.007).

Conclusions

Perfusion parameters and mean ADC differ significantly between endometrial cancer and normal myometrium, potentially reflecting the different microscopical features of cellularity and vascularity; however a significant relationship with tumor grade was not found in our series.  相似文献   

17.

Objectives

To investigate and optimize diffusion-weighted imaging (DWI) acquisitions for pancreatic cancer at 3.0 T.

Methods

Forty-five patients with pancreatic cancer were examined by four DWI acquisitions with b values = 0 and 600 s/mm2 at 3.0 T, including breath-holding DWI (BH-DWI), respiratory-triggered DWI (TRIG-DWI), respiratory-triggered DWI with inversion–recovery technique (TRIGIR-DWI), and free-breathing DWI with inversion–recovery technique (FBIR-DWI). Artifacts, contrast ratio (CR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of pancreatic cancer were statistically compared among DWI acquisitions.

Results

TRIGIR-DWI displayed the lowest artifacts and highest CR compared to other DWI acquisitions. CNRs of pancreatic cancer in TRIG-DWI and TRIGIR-DWI were statistically higher than that in FBIR-DWI and BH-DWI. Different ADCs between pancreatic cancer and noncancerous pancreatic tissues were noticed by a paired-samples T test in TRIG-DWI (p = 0.017), TRIGIR-DWI (p = 0.00001) and FBIR-DWI (p = 0.000041).

Conclusions

TRIGIR-DWI may be the optimal acquisition of DWI for pancreatic cancer at 3.0 T.  相似文献   

18.

Purpose

Our aim was to characterize bi-exponential diffusion signal changes in normal appearing white matter of multiple sclerosis (MS) patients.

Methods

Diffusion parameters were measured using mono-exponential (0–1000 s/mm2) and bi-exponential (0–5000 s/mm2) approaches from 14 relapsing-remitting subtype of MS patients and 14 age- and sex-matched controls after acquiring diffusion-weighted images on a 3T MRI system. The results were analyzed using parametric or nonparametric tests and multiple linear regression models.

Results

Mono-exponential apparent diffusion coefficient (ADC) slightly increased in controls (P=.09), but decreased significantly in MS as a function of age, nonetheless an elevated ADC was observed with increasing lesion number in patients. Bi-exponential analyses showed that the increased ADC is the result of decreased relative volume fraction of slow diffusing component (fs). However, the fast and slow diffusion components (ADCf, ADCs) did not change as a function of either age in controls or lesion number and age in MS patients.

Conclusions

These data demonstrated that the myelin content of the white matter affects diffusion in relapsing-remitting subtype of multiple sclerosis that is possibly a consequence of the shift between different water fractions.  相似文献   

19.

Objectives

The objective was to perform ex vivo evaluation of non-Gaussian diffusion kurtosis imaging (DKI) for assessment of hepatocellular carcinoma (HCC), including presence of treatment-related necrosis, using fresh liver explants.

Methods

Twelve liver explants underwent 1.5-T magnetic resonance imaging using a DKI sequence with maximal b-value of 2000 s/mm2. A standard monoexponential fit was used to calculate apparent diffusion coefficient (ADC), and a non-Gaussian kurtosis fit was used to calculate K, a measure of excess kurtosis of diffusion, and D, a corrected diffusion coefficient accounting for this non-Gaussian behavior. The mean value of these parameters was measured for 16 HCCs based upon histologic findings. For each metric, HCC-to-liver contrast was calculated, and coefficient of variation (CV) was computed for voxels within the lesion as an indicator of heterogeneity. A single hepatopathologist determined HCC necrosis and cellularity.

Results

The 16 HCCs demonstrated intermediate-to-substantial excess diffusional kurtosis, and mean corrected diffusion coefficient D was 23% greater than mean ADC (P=.002). HCC-to-liver contrast and CV of HCC were greater for K than ADC or D, although these differences were significant only for CV of HCCs (P≤.046). ADC, D and K all showed significant differences between non-, partially and completely necrotic HCCs (P≤.004). Among seven nonnecrotic HCCs, cellularity showed a strong inverse correlation with ADC (r=−0.80), a weaker inverse correlation with D (− 0.24) and a direct correlation with K (r= 0.48).

Conclusions

We observed non-Gaussian diffusion behavior for HCCs ex vivo; this DKI model may have added value in HCC characterization in comparison with a standard monoexponential model of diffusion-weighted imaging.  相似文献   

20.

Purpose

The purpose of our study was to compare diffusion-weighted MR imaging (DWI) with conventional dynamic MRI in terms of the assessment of small intrahepatic metastases from hepatocellular carcinoma (HCC).

Materials and Methods

In 24 patients with multifocal, small (≤2 cm) intrahepatic metastatic foci of advanced HCC, a total of 134 lesions (≤1 cm, n=81; >1 cm, n=53) were subjected to a comparative analysis of hepatic MRI including static and gadopentetate dimeglumine-enhanced dynamic imaging, and DWI using a single-shot spin-echo echo-planar MRI (b values=50, 400 and 800 s/mm2), by two independent reviewers.

Results

A larger number of the lesions were detected and diagnosed as intrahepatic metastases on DWI [Reviewer 1, 121 (90%); Reviewer 2, 117 (87%)] than on dynamic imaging [Reviewer 1, 107 (80%); Reviewer 2, 105 (78%)] (P<.05). For the 81 smaller lesions (≤1 cm), DWI was able to detect more lesions than dynamic imaging [Reviewer 1, 68 (84%) vs. 56 (69%), P=.008; Reviewer 2, 65 (80%) vs. 55 (68%), P=.031], but there was no statistically significant difference between the two image sets for larger (>1 cm) lesions.

Conclusion

Due to its higher detection rate of subcentimeter lesions, DWI could be considered complementary to dynamic MRI in the diagnosis of intrahepatic metastases of HCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号