首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metathesis between [(Me3Si)2CH)(C6H4-2-OMe)P]K and SmI2(THF)2 in THF yields [([Me3Si]2CH)(C6H4-2-OMe)P)2Sm(DME)(THF)] (1), after recrystallization. A similar reaction between [(Me3Si)2CH)(C6H3-2-OMe-3-Me)P]K and SmI2(THF)2 yields [([Me3Si]2CH)(C6H3-2-OMe-3-Me)P)2Sm(DME)].Et2O (2), while reaction between [(Me3Si)2CH)(C6H4-2-CH2NMe2)P]K and either SmI2(THF)2 or YbI2 yields the five-coordinate complex [([Me3Si]2CH)(C6H4-2-CH2NMe2)P)2Sm(THF)] (3) or the solvent-free complex [([Me3Si]2CH)(C6H4-2-CH2NMe2)P)2Yb] (4), respectively. X-ray crystallography shows that complex 2 adopts a distorted cis octahedral geometry, while complex 1 adopts a distorted pentagonal bipyramidal geometry (1, triclinic, P1, a = 11.0625(9) A, b = 15.924(6) A, c = 17.2104(14) A, alpha = 72.327(2) degrees, beta = 83.934(2) degrees, gamma = 79.556(2) degrees, Z = 2; 2, monoclinic, P2(1), a = 13.176(4) A, b = 13.080(4) A, c = 14.546(4) A, beta = 95.363(6) degrees, Z = 2). Complex 3 crystallizes as monomers with a square pyramidal geometry at Sm and exhibits short contacts between Sm and the ipso-carbon atoms of the ligands (3, monoclinic, C2/c, a = 14.9880(17) A, b = 13.0528(15) A, c = 24.330(3) A, beta = 104.507(2) degrees, Z = 4). Whereas preliminary X-ray crystallographic data for 4 indicate a monomeric structure in the solid state, variable-temperature 1H, 13C(1H), 31P(1H), and 171Yb NMR spectroscopies suggest that 4 undergoes an unusual dynamic process in solution, which is ascribed to a monomer-dimer equilibrium in which exchange of the bridging and terminal phosphide groups may be frozen out at low temperature.  相似文献   

2.
Chen X  Lim S  Plecnik CE  Liu S  Du B  Meyers EA  Shore SG 《Inorganic chemistry》2005,44(17):6052-6061
The divalent lanthanide bis((cyclooctane-1,5-diyl)dihydroborate) complexes {K(THF)4}2{Ln{(mu-H)2BC8H14}4} (Ln = Eu, 3; Yb, 4) were prepared by a metathesis reaction between (THF)(x)LnCl2 and K[H2BC8H14] in THF in a 1:4 molar ratio. Although the reaction ratios were varied between 1:3 and 1:6, complexes 3 and 4 were the only lanthanide 9-BBN hydroborates produced. Because of disorder of THF in crystals of 3 and 4, good single-crystal X-ray structural data could not be obtained. However, when the potassium cation was replaced by the tetramethylammonium cation or when MeTHF (2-methyltetrahydrofuran) was employed in place of THF, good quality crystals were obtained. Complexes [NMe4]2[Ln{(mu-H)2BC8H14}4] (Ln = Eu, 5; Yb, 6) were afforded by metathesis reactions of NMe4Cl with 3 and 4 in situ. On the basis of the single-crystal X-ray diffraction analysis, the four 9-BBN tetrahydroborate ligands are tetrahedrally arranged around the lanthanide cation in 5 and 6. The two structures differ in that one alpha-C-H bond from each of the four {(mu-H)2BC8H14}4 units exhibits an agostic interaction with Eu(II) in 5 but, in complex 6, only two of the alpha-C-H bonds form agostic interactions with Yb(II). Complexes {K(MeTHF)3}2{Ln{(mu-H)2BC8H14}4} (Ln = Eu, 7; Yb, 8) were produced by employing MeTHF in place of THF. The structures of 7 and 8 display connectivity between the anion {Ln{(mu-H)2BC8H14}4}2- and the cation {K(MeTHF)3}+, in which the potassium not only interacts directly with the hydrogens of the Ln-H-B bridged bonds but is also involved in agostic interactions with alpha-C-H bonds. By systematically examining the structures of complexes 3-8 and taking into account the previously reported complexes (THF)4Ln{(mu-H)2BC8H14}2 (Ln = Eu, 1; Yb, 2), it is concluded that Eu(II) appears to have a better ability to form agostic interactions than Yb(II) because of its larger size, even though Yb(II) has a higher positive charge density.  相似文献   

3.
Two types of Ln(II)-Co(4) isocarbonyl polymeric arrays, [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3; x = 0, 1) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4), were prepared and structurally characterized. Transmetalation involving Ln(0) and Hg[Co(CO)(4)](2) in Et(2)O yields [(Et(2)O)(3)Ln[Co(4)(CO)(11)]]( infinity ) (1, Ln = Yb; 2, Ln = Eu). Dissolution of the solvent-separated ion pairs [Ln(THF)(x)()][Co(CO)(4)](2) (Ln = Yb, x = 6; Ln = Eu) in Et(2)O affords [(Et(2)O)(2)(THF)Yb[Co(4)(CO)(11)]]( infinity ) (3) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4). In these reactions, oxidation and condensation of the [Co(CO)(4)](-) anions result in formation of the new tetrahedral cluster [Co(4)(CO)(11)](2)(-). The two types of Ln(II)-Co(4) compounds contain different isomers of [Co(4)(CO)(11)](2)(-), and, consequently, the structures of the infinite isocarbonyl networks are distinct. The cluster in [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3) possesses pseudo C(3)(v)() symmetry (an apical Co, three basal Co atoms; one face-bridging, three edge-bridging, seven terminal carbonyls) and connects to Ln(II) centers through eta(2),micro(4)- and eta(2),micro(3)-carbonyls to generate a 2-D puckered sheet. In contrast, [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4) incorporates a C(2)(v)() symmetric cluster (two unique Co environments; two face-bridging, one edge-bridging, eight terminal carbonyls), and isocarbonyl linkages (eta(2),micro(4)-carbonyls) to Eu(II) atoms create a 1-D zigzag chain. Complexes 1-4 contain the first reported eta(2),micro(4)-CO bridges between a Ln and a transition-metal carbonyl cluster. Infrared spectroscopic studies revealed that the isocarbonyl associations to Ln(II) persist in solution. The solution structure and dynamic behavior of the [Co(4)(CO)(11)](2)(-) cluster in 1 was investigated by variable-temperature (59)Co and (13)C NMR spectroscopies.  相似文献   

4.
Reaction of H(2)salen (H(2)L) with Tb(OAc)(3).4H(2)O (3 : 2) in MeOH-MeCN under reflux gave homoleptic Tb(4)L(6) (1) in 40% yield; in contrast, similar reactions of Tb(NO(3))(3).6H(2)O and LnCl(3).6H(2)O (Ln = Tb, Nd and Yb) gave [TbL(NO(3))(MeOH)](2)(micro-H(2)L) (2) and [LnL(Cl)(MeOH)](2)(micro-H(2)L) (Ln = Tb (3), Nd (4) and Yb (5); H(2)L = N,N'-ethylenebis(salicylideneimine)).  相似文献   

5.
Du B  Meyers EA  Shore SG 《Inorganic chemistry》2001,40(17):4353-4360
Sheet- and column-like cyanide bridged lanthanide-transition metal arrays were synthesized through metathesis reactions between anhydrous LnCl(3) (Ln = Eu, Yb) and A(2)[M(CN)(4)] (A = K(+), NH(4)(+); M = Ni, Pt) in a 1:2 molar ratio in DMF (DMF = N,N-dimethylformamide) solution. Single-crystal X-ray analysis revealed that complexes of formula [K(DMF)(7)Ln[M(CN)(4)](2)](infinity) (Ln = Eu, M = Ni, 1; Ln = Yb, M = Pt, 2) consist of infinite layers of neutral, puckered sheets that contain hexagonal rings of composition [(DMF)(10)Ln(2)[M(CN)(4)](3)](6) with interstitial (DMF)(4)K(2)[M(CN)(4)] units located between the layers. The sheet structure is generated through the repeating (DMF)(10)Ln(2)[M(CN)(4)](3) unit with trans cyanide ligands in [M(CN)(4)](2)(-) serving as bridges. The column-like complex [(NH(4))(DMF)(4)Yb[Pt(CN)(4)](2)](infinity), 3, is formed when NH(4)(+) replaces K(+). It consists of infinite, negatively charged, square, parallel columns bundled through N-H...NC hydrogen bonds between NH(4)(+) and terminal CN from the columns. Cis cyanide ligands in [Pt(CN)(4)](2)(-) units serve as bridges. Complex 3 is the first known example where Ln(III) centers are coordinated to four [M(CN)(4)](2)(-) units. Bicapped (square face) trigonal prismatic coordination geometries were observed for Ln(III) centers in 1 and 2. Square antiprismatic geometry for Yb(III) centers are observed in 3. Crystal data for 1: triclinic space group P1, a = 8.797(2) A, b = 15.621(3) A, c = 17.973(6) A, alpha = 105.48(2) degrees, beta = 98.60(2) degrees, gamma = 98.15(2) degrees, Z = 2. Crystal data for 2: triclinic space group P1, a = 8.825(1) A, b = 15.673(1) A, c = 17.946(1) A, alpha = 105.46(2) degrees, beta = 99.10(1) degrees, gamma = 98.59(1) degrees, Z = 2. Crystal data for 3: monoclinic space group P2(1)/c, a = 9.032(1) A, b = 29.062(1) A, c = 15.316(1) A, beta = 94.51(1) degrees, Z = 2.  相似文献   

6.
The protonolysis reaction of heterobimetallic peralkylated complexes [Ln(AlR4)2]n (Ln=Sm, Yb; R=Me, Et) with 2 equiv of HOC 6H 2 tBu 2-2,6-Me-4 affords the bis(trialkylaluminum) adducts Ln[(micro-OArtBu,Me)(micro-R)AlR2]2 in good yields. Analogous reactions with the less sterically demanding iPr-substituted phenol result in ligand redistributions and formation of X-ray structurally evidenced Ln[(micro-OAriPr,H) 2AlR2]2 (Ln=Yb, R=Me; Ln=Sm, R=Et), Yb[(micro-OAriPr,H)(micro-Et)AlEt2]2(THF), and [Et2Al(micro-OAriPr,H) 2Yb(micro-Et)2AlEt2]2. The solid-state structures of serendipitous alumoxane complex Sm[(micro-OArtBu,Me)AlEt2OAlEt2(micro-OArtBu,Me)](toluene) and dimeric AlMe 3-adduct complex [(AlMe3)(micro-OArtBu,Me)Sm(micro-OArtBu,Me) 2Sm(micro-OArtBu,Me)(AlMe3)] were also determined by X-ray crystallography. While the former can be discussed as a typical hydrolysis product of Sm[(micro-OArtBu,Me)(micro-Et)AlEt2]2, the latter was isolated from the 1:1 reaction of [Sm(AlEt4)2]n with HOArtBu,Me.  相似文献   

7.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

8.
The enantiomerically pure bridged aminotroponimines, S,S- and R,R-H2{(iPrATI)2diph}, in which two amino-isopropyl-troponimine moieties are linked by 1,2-diamino-1,2-diphenylethane, were deprotonated with nBuLi to give the corresponding dilithium salts [{Li(THF)}2{(S,S)-(iPrATI)2diph)}] (1a) and [{Li(THF)}2{(R,R)-(iPrATI)2diph)}] (1b). The potassium salts [{K(THF)2}2{(S,S)-(iPrATI)2diph}] (2a) and [{K(THF)2}2{(R,R)-(iPrATI)2diph}] (2b) were obtained by a deprotonation reaction with KH. Transmetallation of 2a and 2b with anhydrous lanthanide trichlorides led to [(S,S)-{(iPrATI)2diph}LnCl(THF)] (Ln = Ho (3a), Er (4a)) and [(R,R)-{(iPrATI)2diph}LnCl(THF)] (Ln = Ho (3b), Er (4b), Yb (5b)), respectively. The corresponding Yb complex [(S,S)-{(iPrATI)2diph}YbCl(THF)] (5a) was obtained by treatment of 1a with YbCl3 at elevated temperature. Performing the same reaction at room temperature results in the metallate complex [(S,S)-{(iPrATI)2diph}YbCl2][Li(THF)4] (6). Reaction of NaC5H5 with afforded [(S,S)-{(iPrATI)2diph}Yb(eta5-C5H5)(THF)] (7). The structures of 1a, 3a, 4a, 5a, 5b, 6, and 7 were confirmed by single crystal X-ray diffraction in the solid-state.  相似文献   

9.
Yao Y  Xu X  Liu B  Zhang Y  Shen Q  Wong WT 《Inorganic chemistry》2005,44(14):5133-5140
A convenient method for the synthesis of lanthanide alkoxo complexes supported by a carbon-bridged bis(phenolate) ligand 2,2'-methylenebis(6-tert-butyl-4-methylphenoxo) (MBMP2-) is described. The reaction of (C5H5)3Nd with MBMPH2 in a 1:1 molar ratio in THF gave the bis(phenolato)lanthanide complex (C5H5)Nd(MBMP)(THF)2 (1) in a nearly quantitative yield. Complex 1 further reacted with 1 equiv of 2-propanol in THF to yield the bis(phenolato)lanthanide isopropoxide [(MBMP)2Nd(mu-OPr(i))(THF)2]2 (2) in high yield. Complex 2 can also be synthesized by the direct reaction of (C5H5)3Nd with MBMPH2 in a 1:1 molar ratio and then with 1 equiv of 2-propanol in situ in THF. Thus, the analogue bis(phenolato)lanthanide alkoxides [(MBMP)2Ln(mu-OR)(THF)2]2 [R = Pr(i), Ln = Yb (3); R = Me, Ln = Nd (4), Yb (5); R = CH2Ph, Ln = Nd (6), Yb (7)] were obtained by the reactions of (C5H5)3Ln (Ln = Nd, Yb) with MBMPH2 and then with 2-propanol, methanol, or benzyl alcohol, respectively. The ytterbium complex {[(MBMP)2Yb(THF)2]2(mu-OCH2Ph)(mu-OH)} (8) was also isolated as a byproduct. The single-crystal structural analyses of complexes 1-3 and 8 revealed that the coordination geometry around lanthanide metal can be best described as a distorted tetrahedron in complex 1 and as a distorted octahedron in complexes 2, 3, and 8. A O-H...Yb agostic interaction was observed in complex 8. Complexes 2-7 were shown to be efficient catalysts for the controlled polymerization of epsilon-caprolactone.  相似文献   

10.
The complexes (Li(THF)4)(Ln[(R)-C20H12N2(C10H22)]2) (Ln = Sm, Yb) have been synthesized, fully characterized and found to be efficient and enantioselective catalysts for intramolecular hydroamination of 1-(aminomethyl)-1-allylcyclohexane.  相似文献   

11.
Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.  相似文献   

12.
Cao Y  Du Z  Li W  Li J  Zhang Y  Xu F  Shen Q 《Inorganic chemistry》2011,50(8):3729-3737
Reaction of Ln(OAr(1))(3)(THF)(2) (Ar(1)= [2,6-((t)Bu)(2)-4-MeC(6)H(2)] with carbodiimides (RNCNR) in toluene afforded the RNCNR coordinated complexes (Ar(1)O)(3)Ln(NCNR) (R = (i)Pr (isopropyl), Ln = Y (1) and Yb (2); R = Cy (cyclohexyl), Ln = Y (3)) in high yields. Treatment of 1 and 2 with 4-chloroaniline, respectively, at a molar ratio of 1:1 yielded the corresponding monoguanidinate complex (Ar(1)O)(2)Y[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (4) and (Ar(1)O)(2)Yb[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (5). Complexes 4 and 5 can be prepared by the reaction of Ln(OAr(1))(3)(THF)(2) with RNCNR and amine in toluene at a 1:1:1 molar ratio in high yield directly. A remarkable influence of the aryloxide ligand on this transformation was observed. The similar transformation using the less bulky yttrium complexes Y(OAr(2))(3)(THF)(2) (Ar(2) = [2,6-((i)Pr)(2)C(6)H(3)]) or Y(OAr(3))(3)(THF)(2) (Ar(3) = [2,6-Me(2)C(6)H(3)]) did not occur. Complexes Ln(OAr(1))(3)(THF)(2) were found to be the novel precatalysts for addition of RNCNR with amines, which represents the first example of catalytic guanylation by the lanthanide complexes with the Ln-O active group. The catalytic activity of Y(OAr(1))(3)(THF)(2) was found to be the same as that of monoguanidinate complex 4, indicating 4 is one of the active intermediates in the present process. The other intermediate, amide complex (Ar(1)O)(2)Ln[(2-OCH(3)-C(6)H(4)NH)(2-OCH(3)-C(6)H(4)NH(2))] (6), was isolated by protonolysis of 4 with 2-OCH(3)-C(6)H(4)NH(2). All the complexes were structurally characterized by X-ray single crystal determination.  相似文献   

13.
SynthesisandX-rayStructureofSolvatedMono-cyclopentadienylSamariumDichloride(C_5H_5)SmCl_2(THF)_3¥QianChang-Tao;ZhuDun-Ming;SunJ...  相似文献   

14.
Lanthanide metals reduce mixtures of azobenzene and PhEEPh (E = Se or Te) in pyridine to give the bimetallic compounds [(py)2Ln(EPh)(PhNNPh)]2 (E = Se, Ln = Ho (1), Er (2), Tm (3), Yb (4); E = Te, Ln = Ho (5), Er (6), Tm (7), Yb (8)). The structures of [(py)2Er(mu-eta 2-eta 2-PhNNPh)(SePh)](2).2py (2) and [(py)2Ho(mu-eta 2-eta 2-PhNNPh)(TePh)](2).2py (5) have been determined by low-temperature single-crystal X-ray diffraction, and the nearly identical unit cell volumes of the remaining compounds indicate they are most likely isomorphous to 2 or 5. In all compounds, the Ln(III) ions are bridged by a pair of mu-eta 2-eta 2-PhNNPh ligands that, from the N-N bond length, have clearly been reduced to dianions. Charge is balanced by the single terminal EPh ligand on each Ln, and the coordination sphere is saturated by two pyridine donors to give seven coordinate metal centers. Thermal decomposition of 5 gives HoTe, 8 gives a mixture of YbN and YbTe, and 1 does not give a crystalline solid-state product. Crystal data (Mo K alpha, 153(2) K) are as follows: 2, monoclinic group P2(1)/n, a = 11.864(3) A, b = 14.188(2) A, c = 17.624(2) A, beta = 91.62(2) degrees, V = 2965(1) A3, Z = 4; 5, triclinic space group P1, a = 10.349(2) A, b = 17.662(4) A, c = 17.730(8) A, alpha = 75.82(3) degrees, beta = 74.11(3) degrees, gamma = 89.45(2) degrees, V = 3016(2) A3, Z = 2.  相似文献   

15.
A convenient and one-pot synthetic method of lanthanide thiolate compounds was developed. An excess of metallic samarium, europium, and ytterbium directly reacted with diaryl disulfides in THF to give selectively Ln(II) thiolate complexes, [Ln(SAr)(&mgr;-SAr)(thf)(3)](2) (1, Ln = Sm; 2, Ln = Eu; Ar = 2,4,6-triisopropylphenyl), Yb(SAr)(2)(py)(4) (3, py = pyridine), and [{Ln(hmpa)(3)}(2)(&mgr;-SPh)(3)][SPh] (6, Ln = Sm; 7, Ln = Eu; 8, Ln = Yb; hmpa = hexamethylphosphoric triamide). Reaction of metallic lanthanides with 3 equiv of disulfides afforded Ln(III) thiolate complexes, Ln(SAr)(3)(py)(n)()(thf)(3)(-)(n)() (9a, Ln = Sm, n = 3; 9b, Ln = Sm, n = 2; 10, Ln = Yb, n = 3) and Ln(SPh)(3)(hmpa)(3) (11, Ln = Sm; 12, Ln = Eu; 13, Ln = Yb). Thus, Ln(II) and Ln(III) thiolate complexes were prepared from the same source by controlling the stoichiometry of the reactants. X-ray analysis of 8 revealed that 8 has the first ionic structure composed of triply bridged dinuclear cation and benezenethiolate anion [8, orthorhombic, space group P2(1)2(1)2(1) with a = 21.057(9), b = 25.963(7), c = 16.442(8) ?, V = 8988(5) ?(3), Z = 4, R = 0.040, R(w) = 0.039 for 5848 reflections with I > 3sigma(I) and 865 parameters]. The monomeric structures of 11 and 13 were revealed by X-ray crystallographic studies [11, triclinic, space group P&onemacr; with a = 14.719(3), b = 17.989(2), c = 11.344(2) ?, alpha = 97.91(1), beta = 110.30(2), gamma = 78.40(1) degrees, V = 2751.9(9) ?(3), Z = 2, R = 0.045, R(w) = 0.041 for 7111 reflections with I > 3sigma(I) and 536 parameters; 13, triclinic, space group P&onemacr; with a = 14.565(2), b = 17.961(2), c = 11.302(1) ?, alpha = 97.72(1), beta = 110.49(1), gamma = 78.37(1) degrees, V = 2706.0(7) ?(3), Z = 2, R = 0.031, R(w) = 0.035 for 9837 reflections with I > 3sigma(I) and 536 parameters]. A comparison with the reported mononuclear and dinuclear lanthanide thiolate complexes has been made to indicate that the Ln-S bonds weakened by the coordination of HMPA to lanthanide metals have ionic character.  相似文献   

16.
The molecular structures of terphenyl derivatives of trivalent ytterbium, thulium, and yttrium of general composition DnpLnCl(2)(THF)(2) [Dnp = 2,6-di(1-naphthyl)phenyl] are reported. The complexes (Ln = Yb: 1; Ln = Tm: 2; Ln = Y: 3) are synthesized by reaction of 1 equiv of DnpLi with 1 equiv of LnCl(3) (Ln = Yb, Tm, or Y) in tetrahydrofuran at room temperature in 50% yield. Attempts to prepare a Dnp scandium compound gave heterobimetallic [(THF)(3)Sc(2)OCl(5)Li(THF)](2) (4) in low yield. 1 crystallizes in the monoclinic space group C2/c. Crystal data for 1 at 203 K: a = 14.333(3) A, b = 16.353(3) A, c = 12.427(2) A, beta = 91.021(4) degrees, Z = 4, D(calcd) = 1.637 g cm(-3), R(1) = 4.44%. 2 crystallizes in the monoclinic space group C2/c. Crystal data for 2 at 203 K: a = 14.333(1) A, b = 16.374(2) A, c = 12.404(1) A, beta = 90.934(2) degrees, Z = 4, D(calcd) = 1.628 g cm(-3), R(1) = 3.00%. 3 crystallizes in the monoclinic space group C2/c. Crystal data for 3 at 203 K: a = 14.348(3) A, b = 16.476(3) A, c = 12.356(2) A, beta = 90.987(4) degrees, Z = 4, D(calcd) = 1.441 g cm(-3), R(1) = 5.62%. 4 crystallizes in the monoclinic space group P2(1)/n. Crystal data for 4 at 203 K: a = 11.0975(9) A, b = 11.0976(9) A, c = 21.3305(18) A, beta = 94.718(2) degrees, Z = 2, D(calcd) = 1.051 g cm(-3), R(1) = 3.45%. Complexes 1-3 represent examples of novel chiral (racemic) organometallic complexes of the lanthanide elements ytterbium and thulium and the group 3 element yttrium, respectively. The molecular structures of monomeric 1-3 exhibit distorted trigonal-bipyramidal coordination environments at the metal center, with the two oxygen atoms of the tetrahydrofuran ligands occupying the axial positions of a trigonal-bipyramidal coordination polyeder. The molecular structure of the scandium compound 4 shows a complex polynuclear heterobimetallic arrangement.  相似文献   

17.
Transmetalation reactions of metallic ytterbium with Hg[Co(CO)(4)](2) in the coordinating solvents pyridine and THF yield the solvent-separated ion pairs [Yb(L)(6)] [Co(CO)(4)](2) (1a, L = Pyr; 2a, L = THF). The IR spectrum of 1a in pyridine indicates that the tetracarbonylcobaltate anion is not directly bonded to the divalent Yb cation owing to the strong coordinating ability of pyridine. On the other hand, IR spectra of 2a in THF are concentration dependent. In dilute solutions there is an equilibrium between the solvent-separated ion pair and a weak contact ion pair. Higher concentrations of 2a facilitate the formation of a tight ion pair that has a low-frequency isocarbonyl absorption. Remarkably, complexes 1a and 2a are easily transformed in toluene into the two-dimensional sheetlike arrays [(Pyr)(4)Yb[(mu-CO)(2)Co(CO)(2)](2)](infinity) (1b) and [(THF)(2)Yb[(mu-CO)(3)Co(CO)](2).Tol](infinity) (2b). The two-dimensional frameworks are supported by isocarbonyl linkages. Infrared spectra of toluene solutions substantiate the existence of the isocarbonyl bridges with low-frequency absorptions at 1780 cm(-1). Compounds 1b and 2b belong to a rare class of lanthanide-transition-metal carbonyl extended arrays, only three others of which have been structurally established. Dissolving 1b in pyridine regenerates 1a, but the complete conversion of 2b into 2a cannot be achieved. Crystal data: 1a.Pyr is monoclinic, P2(1)/c, a = 11.171(1) A, b = 11.925(1) A, c = 33.978(1) A, beta = 95.10(1) degrees, Z = 4; 2a is monoclinic, C2/c, a = 17.724(1) A, b = 12.468(1) A, c = 18.413(1) A, beta = 100.34(1) degrees, Z = 4; 1b is monoclinic, C2/c, a = 11.047(1) A, b = 13.423(1) A, c = 21.933(1) A, beta = 103.49(1) degrees, Z = 4; 2b is monoclinic, C2/c, a = 28.589(1) A, b = 7.223(1) A, c = 14.983(1) A, beta = 118.90(1) degrees, Z = 4.  相似文献   

18.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

19.
The reaction of YbI(2) with KTp(Me2) gives (Tp(Me2))YbI(THF)(2) (1-Yb) as a thermally unstable product. Use of the more hindered KTp(tBu,Me) gave (Tp(tBu,Me))LnI(THF)(n) (Ln = Sm, n = 2, 2-Sm; Ln = Yb, n = 1, 2-Yb). The crystal structures of both these compounds are reported. Adducts with neutral ligands such as pyridines and isonitriles can be prepared and the crystal structures of [(Tp(tBu,Me))YbIL(n)] (L = CN(t)Bu, n = 1; L = 3,5-lutidine, n = 2) are described. 2-Sm can be oxidized using AgBPh(4) to give [(Tp(tBu,Me))SmI(THF)(2)]BPh(4). Compounds 2-Sm and 2-Yb are useful starting materials for the preparation of heteroleptic compounds by metathesis with appropriate potassium reagents. The preparations and characterization of the hydrocarbyls (Tp(tBu,Me))Ln{CH(SiMe(3))(2)} (Ln = Sm, 5-Sm; Yb, 5-Yb) and [(Tp(tBu,Me))Ln{CH(2)(SiMe(3))}(THF)] (Ln = Yb, 6a-Yb) and the triethylborohydrides [(Tp(tBu,Me))Ln(HBEt(3))(THF)(n)] (Ln = Sm, n = 0, 7-Sm; Yb, n = 1, 7-Yb) are reported, as well as the crystal structures of 5-Sm and 5-Yb, and the THF adducts 6a-Yb and [(Tp(tBu,Me))Sm{CH(SiMe(3))(2)}(THF)], 5a-Sm.  相似文献   

20.
Treatment of the recently reported potassium salt [K(thf)(n)][N(PPh(2))(2)] (n=1.25, 1.5) with anhydrous yttrium or lanthanide trichlorides in THF leads after crystallization from THF/n-pentane (1:2) to the monosubstituted diphosphanylamide complexes [LnCl(2)[(Ph(2)P)(2)N](thf)(3)] (Ln=Y, Sm, Er, Yb). The single-crystal X-ray structures of these complexes show that the metal atoms are surrounded by seven ligands in a distorted pentagonal bipyramidal arrangement, in which the chlorine atoms are located in the apical positions. The diphosphanylamide ligand is always eta(2)-coordinated through the nitrogen atom and one phosphorus atom. Further reaction of [SmCl(2)[(Ph(2)P)(2)N](thf)(3)] with K(2)C(8)H(8) or reaction of [LnI(eta(8)-C(8)H(8))(thf)(3)] with [K(thf)(n)][N(PPh(2))(2)] in THF gives the corresponding cyclooctatetraene complexes [Ln[(Ph(2)P)(2)N](eta(8)-C(8)H(8))(thf)(2)] (Ln=La, Sm). The single crystals of these compounds contain enantiomerically pure complexes. Both compounds adopt a four-legged piano-stool conformation in the solid state. The structures of the A and the C enantiomers were established by single-crystal X-ray diffraction. The more soluble bistrimethylsilyl cyclooctatetraene complex [Y[(Ph(2)P)(2)N](eta(8)-1,4-(Me(3)Si)(2)C(8)H(6))(thf)(2)] was obtained by transmetallation of Li(2)[1,4-(Me(3)Si)(2)C(8)H(6)] with anhydrous yttrium trichloride in THF followed by the addition of one equivalent of [K(thf)(n)][N(PPh(2))(2)]. The (89)Y NMR signal of the complex is split up into a triplet, supporting other observations that the phosphorus atoms are chemically equivalent in solution and, thus, dynamic behavior of the ligand in solution can be anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号