首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Important structural and mechanistic details concerning the non-heme, low-spin Fe(III) center in nitrile hydratase (NHase) remain poorly understood. We now report projection unrestricted Hartree-Fock (PUHF) calculations on the spin preferences of a series of inorganic complexes in which Fe(III) is coordinated by a mixed set of N/S ligands. Given that many of these compounds have been prepared as models of the NHase metal center, this study has allowed us to evaluate this computational approach as a tool for future calculations on the electronic structure of the NHase Fe(III) center itself. When used in combination with the INDO/S semiempirical model, the PUHF method correctly predicts the experimentally observed spin state for 12 of the 13 Fe(III)-containing complexes studied here. The one compound for which there is disagreement between our theoretical calculations and experimental observation exhibits temperature-dependent spin behavior. In this case, the failure of the PUHF-INDO/S approach may be associated with differences between the structure of the Fe(III) complex present under the conditions used to measure the spin preference and that observed by X-ray crystallography. A preliminary analysis of the role of the N/S ligands and coordination geometry in defining the Fe(III) spin preferences in these complexes has also been undertaken by computing the electronic properties of the lowest energy Fe(III) spin states. While any detailed interpretation of our results is constrained both by the limited set of well-characterized Fe(III) complexes used in this study and by the complicated dependence of Fe(III) spin preference upon metal-ligand interactions and coordination geometry, these PUHF-INDO/S calculations support the hypothesis that the deprotonated amide nitrogens coordinating the metal stabilize the low-spin Fe(III) ground state seen in NHase. Strong evidence that the sulfur ligands exclusively define the Fe(III) spin state preference by forming metal-ligand bonds with significant covalent character is not provided by these computational studies. This might, however, reflect limitations in modeling these systems at the INDO/S level of theory.  相似文献   

2.
Fe-type nitrile hydratase (NHase) is a non-heme Fe(III)-dependent enzyme that catalyzes the hydration of nitriles to the corresponding amides. Despite experimental studies of the enzyme and model Fe(III)-containing complexes, many questions concerning the electronic structure and spectroscopic transitions of the metal center remain unanswered. In addition, the catalytic mechanism of nitrile hydration has not yet been determined. We now report density functional theory (B3LYP/6-31G) calculations on three models of the Fe(III) center in the active site of NHase corresponding to hypothetical intermediates in the enzyme-catalyzed hydration of acetonitrile. Together with natural bond orbital (NBO) analysis of the chemical bonding in these active-site models and INDO/S CIS calculations of their electronic spectra, this theoretical investigation gives new insight into the molecular origin of the unusual low-spin preference and spectroscopic properties of the Fe(III) center. In addition, the low-energy electronic transition observed for the active form of NHase is assigned to a dd transition that is coupled with charge-transfer transitions involving the metal and its sulfur ligands. Calculations of isodesmic ligand-exchange reaction energies provide support for coordination of the Fe(III) center in free NHase by a water molecule rather than a hydroxide ion and suggest that the activation of the nitrile substrate by binding to the metal in the sixth coordination site during catalytic turnover cannot yet be definitively ruled out.  相似文献   

3.
The unusual metal coordination and spin-state of the Fe(III) center in nitrile hydratase (NHase) has stimulated the synthesis of numerous model complexes in efforts to understand the reactivity and spectroscopic properties of the enzyme. A particular problem has been the development of model Fe(III) complexes that exhibit reversible, photolabile binding to nitric oxide (NO) in a manner similar to that observed for the NHase metal center. We now report a detailed NBO analysis of the ground-state chemical bonding in three [Fe-NO](6) complexes that exhibit different responses to irradiation, together with investigations of their spectroscopic properties using semiempirical INDO/S CI singles calculations. Our computational studies reveal a correlation between the photolability of these complexes and the existence of low-energy transitions that promote an electron into the Fe-NO pi(*) antibonding molecular orbital. In addition to providing detailed insights into how the ligand field influences the spectroscopy of these mononuclear complexes, these studies strengthen our previous conclusions regarding the role of post-translational cysteine modification in modulating the photoreactivity of the inactive, NO complex of NHase.  相似文献   

4.
The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS(-))-, sulfenate (RSO(-))-, and sulfinate (RSO(2)(-))-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO(-) species changes upon protonation as the S-O bond is elongated (by approximately 0.1 A). These signature features are used to identify the three cysteine residues coordinated to the low-spin Fe(III) in the active site of NHase as CysS(-), CysSOH, and CysSO(2)(-) both in the NO-bound inactive form and in the photolyzed active form. These results are correlated to geometry-optimized DFT calculations. The pre-edge region of the X-ray absorption spectrum is sensitive to the Z(eff) of the Fe and reveals that the Fe in [FeNO](6) NHase species has a Z(eff) very similar to that of its photolyzed Fe(III) counterpart. DFT calculations reveal that this results from the strong pi back-bonding into the pi antibonding orbital of NO, which shifts significant charge from the formally t(2)(6) low-spin metal to the coordinated NO.  相似文献   

5.
The syntheses and structures of three new coordinatively unsaturated, monomeric, square-pyramidal thiolate-ligated Fe(III) complexes are described, [Fe(III)((tame-N(3))S(2)(Me2))](+) (1), [Fe(III)(Et-N(2)S(2)(Me2))(py)](1-) (3), and [Fe(III)((tame-N(2)S)S(2)(Me2))](2-) (15). The anionic bis-carboxamide, tris-thiolate N(2)S(3) coordination sphere of 15 is potentially similar to that of the yet-to-be characterized unmodified form of NHase. Comparison of the magnetic and reactivity properties of these reveals how anionic charge build up (from cationic 1 to anionic 3 and dianionic 15) and spin-state influence apical ligand affinity. For all of the ligand-field combinations examined, an intermediate S = 3/2 spin state was shown to be favored by a strong N(2)S(2) basal plane ligand field, and this was found to reduce the affinity for apical ligands, even when they are built in. This is in contrast to the post-translationally modified NHase active site, which is low spin and displays a higher affinity for apical ligands. Cationic 1 and its reduced Fe(II) precursor are shown to bind NO and CO, respectively, to afford [Fe(III)((tame-N(3))S(2)(Me))(NO)](+) (18, nu(NuO) = 1865 cm(-1)), an analogue of NO-inactivated NHase, and [Fe(II)((tame-N(3))S(2)(Me))(CO)] (16; nu(CO) stretch (1895 cm(-1)). Anions (N(3)(-), CN(-)) are shown to be unreactive toward 1, 3, and 15 and neutral ligands unreactive toward 3 and 15, even when present in 100-fold excess and at low temperatures. The curtailed reactivity of 15, an analogue of the unmodified form of NHase, and its apical-oxygenated S = 3/2 derivative [Fe(III)((tame-N(2)SO(2))S(2)(Me2))](2-) (20) suggests that regioselective post-translational oxygenation of the basal plane NHase cysteinate sulfurs plays an important role in promoting substrate binding. This is supported by previously reported theoretical (DFT) calculations.  相似文献   

6.
Ligand K-edge XAS of an [Fe3S4]0 model complex is reported. The pre-edge can be resolved into contributions from the mu(2)S(sulfide), mu(3)S(sulfide), and S(thiolate) ligands. The average ligand-metal bond covalencies obtained from these pre-edges are further distributed between Fe(3+) and Fe(2.5+) components using DFT calculations. The bridging ligand covalency in the [Fe2S2]+ subsite of the [Fe3S4]0 cluster is found to be significantly lower than its value in a reduced [Fe2S2] cluster (38% vs 61%, respectively). This lowered bridging ligand covalency reduces the superexchange coupling parameter J relative to its value in a reduced [Fe2S2]+ site (-146 cm(-1) vs -360 cm(-1), respectively). This decrease in J, along with estimates of the double exchange parameter B and vibronic coupling parameter lambda2/k(-), leads to an S = 2 delocalized ground state in the [Fe3S4]0 cluster. The S K-edge XAS of the protein ferredoxin II (Fd II) from the D. gigas active site shows a decrease in covalency compared to the model complex, in the same oxidation state, which correlates with the number of H-bonding interactions to specific sulfur ligands present in the active site. The changes in ligand-metal bond covalencies upon redox compared with DFT calculations indicate that the redox reaction involves a two-electron change (one-electron ionization plus a spin change of a second electron) with significant electronic relaxation. The presence of the redox inactive Fe(3+) center is found to decrease the barrier of the redox process in the [Fe3S4] cluster due to its strong antiferromagnetic coupling with the redox active Fe2S2 subsite.  相似文献   

7.
The chemical bond between an adsorbed, laterally coordinated metal ion and a metal surface is affected by an additional axial ligand on the metal ion. This surface analogon of the trans effect was studied in detail using monolayers of various M(II)-tetraphenylporphyrins (MTTPs, M = Fe, Co, Zn) and their nitrosyl complexes on a Ag(111) surface. X-ray photoelectron spectroscopy (XPS) shows that the oxidation state of the Fe and Co (but not Zn) ions in the MTPP monolayers is reduced because of the interaction with the substrate. This partial reduction is accompanied by the appearance of new valence states in the UV photoelectron and scanning tunneling spectra (UPS and STS), revealing the covalent character of the ion-substrate bond. Subsequent coordination of nitric oxide (NO) to the metal ions (Fe, Co) reverses these surface-induced effects, resulting in an increase of the oxidation states and the disappearance of the new valence states. Removal of the NO ligands by thermal desorption restores the original spectroscopic features, indicating that the described processes are fully reversible. The NO coordination also changes the spin state and thus the magnetic properties of the metal ions. Density-functional theory (DFT) calculations on model systems provide structural and energetic data on the adsorbed molecules and the surface chemical bond. The calculations reveal that competition effects, similar to the trans effect, play a central role and lead to a mutual interference of the two axial ligands, NO and Ag, and their bonds to the metal center. These findings have important implications for sensor technology and catalysis using supported planar metal complexes, in which the activity of the metal center is sensitively influenced by the substrate.  相似文献   

8.
Iron corroles modified with a xanthene scaffold are delivered from easily available starting materials in abbreviated reaction times. These new iron corroles have been spectroscopically examined with particular emphasis on defining the oxidation state of the metal center. Investigation of their electronic structure using (57)Fe Mo?ssbauer spectroscopy in conjunction with density functional theory (DFT) calculations reveals the non-innocence of the corrole ligand. Although these iron corroles contain a formal Fe(IV) center, the deprotonated corrole macrocycle ligand is one electron oxidized. The electronic ground state of these complexes is best described as an intermediate spin S = 3/2 Fe(III) site strongly antiferromagnetically coupled to the S = 1/2 of the monoradical dianion corrole [Fe(III)Cl-corrole(+?)]. We show here that iron corroles as well as xanthene-modified and hangman xanthene iron corroles are redox active and catalyze the disproportionation of hydrogen peroxide via the catalase reaction, and that this activity scales with the oxidation potential. The meso position of corrole macrocycle is susceptible toward nucleophilic attack during catalase turnover. The reactivity of peroxide within the hangman cleft reported here adds to the emerging theme that corroles are good at catalyzing two-electron activation of the oxygen-oxygen bond in a variety of substrates.  相似文献   

9.
The 'Click'-derived tripodal ligand tris[(1-benzyl-1H-1,2,3-triazole-4-yl)methyl]amine, tbta, was used to synthesize the complexes [Fe(tbta)Cl]BF(4), 1, and [Co(tbta)Cl]BF(4), 2. Both complexes were characterized by (1)H NMR spectroscopy and elemental analysis. Single-crystal X-ray structural determination of 2 shows a 4 + 1 coordination around the cobalt(II) center with a rather long bond between Co(II) and the central amine nitrogen atom of tbta. Such a coordination geometry is best described as capped tetrahedral. 1 and 2 are thus the first examples of pseudotetrahedral coordinated Fe(II) and Co(II) complexes with tbta. A combination of SQUID susceptometry, EPR spectroscopy, M?ssbauer spectroscopy, and DFT calculations was used to elucidate the electronic structures of these complexes and determine the spin state of the metal center. Comparisons are made between the complexes presented here with related complexes of other ligands such as tris(2-pyridylmethyl)amine, tmpa, hydrotris(pyrazolyl) borate, Tp, and tris(2-(1-pyrazolyl)methyl)amine, amtp. 1 and 2 were tested as precatalysts for the homopolymerization of ethylene, and both complexes delivered distinctly different products in this reaction. Blind catalyst runs were carried out with the metal salts to prove the importance of the tripodal ligand for product formation.  相似文献   

10.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

11.
The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(?)), produces the mononuclear transition metal complex [Fe(II)(L(?))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mo?ssbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mo?ssbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(?) coordinate equatorially while the oxygen containing the radical from L(?) coordinates axially forming a linear O(?)··Fe(II)··O(?) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.  相似文献   

12.
13.
Bond distance is a common structural metric used to assess changes in metal–ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal–ligand covalency. Here we report ligand K‐edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K‐edge pre‐edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M?P σ bonding and bond distance. Cl K‐edge studies conducted on many of the same Ni and Pd compounds revealed a poor correlation between M?Cl bond distance and covalency, but a strong correlation was established by analyzing Cl K‐edge data for Ti complexes with a wider range of Ti?Cl bond distances. Together these results establish a quantitative framework to begin making more accurate assessments of metal–ligand covalency using bond distances from readily‐available crystallographic data.  相似文献   

14.
To determine structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-2), trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-3) and trans-Pt(PBu3)2(C[triple bond]C-C6H4-C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over the chromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha's rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.  相似文献   

15.
The photochemistry of the phosphine-substituted transition metal carbonyl complexes Cr(CO)(5)PH(3) and ax-Fe(CO)(4)PH(3) is studied with time-dependent DFT theory to explore the propensity of the excited molecules to expel their ligands. The influence of the PH(3) ligand on the properties of these complexes is compared with the photodissociation behavior of the binary carbonyl complexes Cr(CO)(6) and Fe(CO)(5). The lowest excited states of Cr(CO)(5)PH(3) are metal-to-ligand charge transfer (MLCT) states, of which the first three are repulsive for PH(3) but modestly bonding for the axial and equatorial CO ligands. The repulsive nature is due to mixing of the initial MLCT state with a ligand field (LF) state. A barrier is encountered along the dissociation coordinate if the avoided crossing between these states occurs beyond the equilibrium distance. This is the case for expulsion of CO but not for the PH(3) group as the avoided state crossing occurs within the equilibrium Cr-P distance. The lowest excited state of ax-Fe(CO)(4)PH(3) is a LF state that is repulsive for both PH(3) and the axial CO. Excited-state quantum dynamics calculations for this state show a branching ratio of 99 to 1 for expulsion of the axial phosphine ligand over an axial CO ligand. The nature of the phosphorus ligand in these Cr and Fe complexes is only of modest importance. Complexes containing the three-membered phosphirane or unsaturated phosphirene rings have dissociation curves for their lowest excited states that are similar to those having a PH(3) ligand. Analysis of their ground-state Cr-P bond properties in conjunction with frontier orbital arguments indicate these small heterocyclic groups to differ from the PH(3) group mainly by their enhanced sigma-donating ability. All calculations indicate that the excited Cr(CO)(5)L and Fe(CO)(4)L molecules (L = PH(3), PC(2)H(5), and PC(2)H(3)) prefer dissociation of their phosphorus substituent over that of an CO ligand. This suggests that the photochemical approach may be a viable complement to the ligand exchange and redox methods that are currently employed to demetalate transition metal complexed organophosphorus compounds.  相似文献   

16.
The source of the effect of N-alkylation on the redox properties of Ni(II/I) and Cr(III/II) cyclam complexes has been investigated using DFT calculations. The structures of the anhydrous and hydrated complexes were optimized in the gas phase, and single point calculations were performed in a polarized continuum. The main results are the following: the decrease in outer sphere solvation upon N-alkylation is the major source of the relative stabilization of the lower oxidation state complexes by the tertiary amine ligands; tertiary amine nitrogen donors are stronger sigma-donors than the secondary amines, as predicted from the inductive effect of alkyls; steric strain elongates the metal-nitrogen bonds in the tertiary complexes and decreases the ligand strain energies; and the site of water binding to the complexes differs because of their different electronic structures (i.e., in the Ni complexes, the water molecules bind to the M[bond]N[bond]H sites, whereas in the Cr complexes they bind to the central metal cation). Outer sphere hydrogen bonding of water to the ligands in the coordination sphere lowers the ionization potentials by charge delocalization.  相似文献   

17.
Metal acetylacetonates of the general formula [M(acac)3] (MIII=Cr, Mn, Fe, Co) are among the best investigated coordination compounds. Many of these first-row transition metal complexes are known to have unique electronic properties. Independently, photophysical research with different β-diketonate ligands pointed towards the possibility of a special effect of the 2,4,6-trimethylphenyl substituted acetylacetonate (mesacac) on the electron distribution between ligand and metal (MLCT). We therefore synthesized and fully characterized the previously unknown octahedral title complex. Its solid-state structure shows a Jahn-Teller elongation with two Mn−O bonds of 2.12/2.15 Å and four Mn−O bonds of 1.93 Å. Thermogravimetric data show a thermal stability up to 270 °C. High-resolution mass spectroscopy helped to identify the decomposition pathways. The electronic state and spin configuration of manganese were characterized with a focus on its magnetic properties by measurement of the magnetic susceptibility and triple-zeta density functional theory (DFT) calculations. The high-spin state of manganese was confirmed by the determination of an effective magnetic moment of 4.85 μB for the manganese center.  相似文献   

18.
19.
X-ray absorption spectroscopy (XAS) at the sulfur ( approximately 2470 eV) and chlorine ( approximately 2822 eV) K-edges has been applied to a series of 4Fe-4S model complexes. These are compared to 2Fe-2S model complexes to obtain insight into the localized ground state in the mixed-valence dimer versus the delocalized ground state in the mixed-valence tetramer. The preedges of hypothetical delocalized mixed-valence dimers [Fe(2)S(2)](+) are estimated using trends from experimental data and density functional calculations, for comparison to the delocalized mixed-valence tetramer [Fe(4)S(4)](2+). The differences between these two mixed-valence sites are due to the change of the sulfide-bridging mode from micro(2) to micro(3). The terminal chloride and thiolate ligands are used as spectator ligands for the electron density of the iron center. From the intensity of the preedge, the covalency of the terminal ligands is found to increase in the tetramer as compared to the dimer. This is associated with a higher effective nuclear charge on the iron in the tetramer (derived from the energies of the preedge). The micro(3)-bridging sulfide in the tetramer has a reduced covalency per bond (39%) as compared to the micro(2)-bridging sulfide in the dimer (51%). A simple perturbation model is used to derive a quadratic dependence of the superexchange coupling constant J on the covalency of the metal ions with the bridging ligands. This relationship is used to estimate the superexchange contribution in the tetramer (J = -156 cm(-)(1)) as compared to the mixed-valence dimer (J = -360 cm(-)(1)). These results, combined with estimates for the double exchange and the vibronic coupling contributions of the dimer sub-site of the tetramer, lead to a delocalized S(t) = (9)/(2) spin ground state for the mixed-valence dimer in the tetramer. Thus, the decrease in the covalency, hence the superexchange pathway associated with changing the bridging mode of the sulfides from micro(2) to micro(3) on going from the dimer to the tetramer, significantly contributes to the delocalization of the excess electron over the dimer sub-site in the tetramer.  相似文献   

20.
The reaction of Fe(NCS)3 prepared in situ in MeOH with 5‐X‐SalEen ligands (5‐X‐SalEen=condensation product of 5‐substituted salicylaldehyde and N‐ethylethylenediamine) provided three Fe(III) complexes, [Fe(5‐X‐SalEen)2]NCS; X=Me ( 1 ), X=Br ( 2 ), X=OMe ( 3 ). All the complexes reveal similar structural features but a very different magnetic profile. Complex 1 shows a gradual spin crossover while complexes 2 and 3 show a sharp spin transition. The T1/2 for complex 2 is 237 K while for complex 3 it is much higher with a value of 361 K. The spin transition temperature is shifted towards higher temperature with increasing electron‐donation ability of the ligand substituents. This experimental observation has been rationalized with DFT calculations. UV‐Vis and cyclic voltammetry studies support the fact that the electron density on the ligand increases from Me to Br to OMe substituents. To understand the change in spin states, temperature‐dependent EPR spectra have been recorded. The spin state equilibrium in the liquid state has been probed with Evans NMR spectroscopic method, and thermodynamic parameters have been evaluated for all complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号