首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method of one‐stage soap‐free emulsion polymerization to synthesize narrowly dispersed core‐shell microspheres is proposed. Following this method, core‐shell microspheres of poly(styrene‐co‐4‐vinylpyridine), poly(styrene‐co‐methyl acrylic acid), and poly[styrene‐co‐2‐(acetoacetoxy)ethyl methacrylate‐co‐methyl acrylic acid] are synthesized by one‐stage soap‐free emulsion polymerization of a mixture of one or two hydrophobic monomers and a suitable hydrophilic monomer in water. The effect of the molar ratio of the hydrophobic monomer to the hydrophilic one on the size, the core thickness, and the shell thickness of the core‐shell microspheres is discussed. The molar ratio of the hydrophobic and hydrophilic monomers and the hydrophilicity of the resultant oligomers of the hydrophilic monomer are optimized to synthesize narrowly dispersed core‐shell microspheres. A possible mechanism of one‐stage soap‐free emulsion polymerization to synthesize core‐shell microspheres is suggested and coagglutination of the oligomers of the hydrophilic monomers on the hydrophobic core is considered to be the key to form core‐shell microspheres. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1192–1202, 2008  相似文献   

2.
Polymeric microspheres were prepared from a Merrifield resin via nitroxide‐mediated radical polymerization. Polystyrene, poly(acetoxystyrene), and poly[styrene‐b‐(methyl methacrylate‐co‐styrene)], poly(acetoxystyrene‐b‐styrene), and poly(styrene‐co‐2‐hydroxyethyl methacrylate) copolymers were demonstrated to graft onto 2,2,6,6‐tetramethyl‐1‐piperidinyloxy nitroxide bound Merrifield resins. The polymerization control was enhanced both on the surface and in solution by the addition of sacrificial nitroxide. The significant increase in the particle diameter (more than a fivefold volume increase for polystyrene brushes) showed that polymer growth was not only on the surface but also within the particles, and this diameter increase could be adjusted through changes in the molecular weight of the polymers. The microspheres were characterized by elemental analysis, IR spectroscopy, particle size analysis, and optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2145–2154, 2005  相似文献   

3.
The nonionic amphiphilic brush polymers such as poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] and poly[poly(ethylene oxide) methyl ether vinylphenyl‐b‐styrene‐b‐poly(ethylene oxide) methyl ether vinylphenyl] trithiocarbonate [P(mPEGV‐b‐St‐b‐mPEGV)‐TTC] with different monomer sequence and chemical composition are synthesized and their application as macro‐RAFT agent in the emulsion RAFT polymerization of styrene is explored. It is found that the monomer sequence in the brush polymers exerts great influence on the emulsion RAFT polymerization kinetics, and the fast polymerization with short induction period in the presence of P(mPEGV‐co‐St)‐TTC is demonstrated. Besides, the chemical composition in the brush polymer macro‐RAFT agent effect on the emulsion RAFT polymerization is investigated, and the macro‐RAFT agent with high percent of the hydrophobic PS segment leads to fast and well controlled polymerization. The growth of triblock copolymer colloids in the emulsion polymerization is checked, and it reveals that the colloidal morphology is ascribed to the hydrophobic PS block extension, and the P(mPEGV‐co‐St) block almost have no influence just on the size of the colloids. This may be the first example to study the monomer sequence and the chemical composition in the macro‐RAFT agent on emulsion RAFT polymerization, and will be useful to reveal the block copolymer particle growth. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

5.
CO2‐switchable polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl methacrylate) (PBMA) latexes were prepared via surfactant‐free emulsion polymerization (SFEP) under a CO2 atmosphere, employing N‐[3‐(dimethylamino)propyl]methacrylamide (DMAPMAm) as a CO2‐switchable, water‐soluble, and hydrolytically stable comonomer. The conversion of the SFEP of styrene reaches >95% in less than 5 h. The resulting latexes have near monodisperse particles (PDI ≤ 0.05), as confirmed by DLS and TEM. The latexes could be destabilized by bubbling nitrogen (N2) and heating at 65 °C for 30 min, and easily redispersed by only bubbling CO2 for a short time without using sonication. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1059–1066  相似文献   

6.
Polymers based on renewable sources are promising materials, and can find many uses in coatings and adhesive applications. The goal of this work was to synthesize and characterize bio‐based styrene/acrylated fatty acid methyl ester (AFAME) copolymer—poly(styrene‐co‐AFAME) prepared by miniemulsion polymerization. The main strategy adopted was to functionalize the bio‐monomer with acrylic acid that was confirmed by 1H NMR and FTIR measurements, to allow its free‐radical homo‐ or copolymerization with styrene. Poly(styrene‐co‐AFAME) with different AFAME content were obtained and their composition were evaluated by 1H NMR. Dynamic light scattering measurements throughout the reactions have indicated a very stable colloidal systems and average particles size ranges 100–150 nm. The structural and physical properties of poly(styrene‐co‐AFAME) were investigated by DTG‐DTA, DSC which displayed a decreasing of glass transition temperature with increase of AFAME content. The results showed in this study have indicated that the poly(styrene‐co‐AFAME) can be used in several fields because their characteristics are totally distinct. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1422–1432  相似文献   

7.
The amphiphilic poly(AM‐co‐SA)‐ITXH macrophotoinitiator was synthesized by precipitation photopolymerization under UV irradiation with isopropylthioxanthone (ITX) as free radical photoinitiator. A novel method has been developed to prepare amphiphilic core‐shell polymer nanospheres via photopolymerization of methyl methacrylate (MMA) in aqueous media, with amphiphilic copolymer macrophotoinitiator poly(AM‐co‐SA)‐ITXH. During polymerization, the amphiphilic macroradicals underwent in situ self‐assembly to form polymeric micelles, which promoted the emulsion polymerization of the monomer. Thus, amphiphilic core‐shell nanospheres ranging from 70 to 140 nm in diameter were produced in the absence of surfactant. The conversion of the monomer, number average molecular weights (Mn), and particle size were found to be highly dependent on the macrophotoinitiator and monomer concentration. The macrophotoinitiator and amphiphilic particles were characterized by FTIR, UV‐vis, 1H NMR, TEM, DSC, and contact angle measurements. The results showed the particles had well‐defined amphiphilic core‐shell structure. This new method is scientifically and technologically significant because it provides a commercially viable route to a wide variety of novel amphiphilic core‐shell nanospheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 936–942, 2010  相似文献   

8.
The miscibility of tetramethylpolycarbonate (TMPC) blends with styrenic copolymers containing various methacrylates was examined, and the interaction energies between TMPC and methacrylate were evaluated from the phase‐separation temperatures of TMPC/copolymer blends with lattice‐fluid theory combined with a binary interaction model. TMPC formed miscible blends with styrenic copolymers containing less than a certain amount of methacrylate, and these miscible blends always exhibited lower critical solution temperature (LCST)‐type phase behavior. The phase‐separation temperatures of TMPC blends with copolymers such as poly(styrene‐co‐methyl methacrylate), poly(styrene‐co‐ethyl methacrylate), poly(styrene‐con‐propyl methacrylate), and poly(styrene‐co‐phenyl methacrylate) increase with methacrylate content, go through a maximum, and decrease, whereas those of TMPC blends with poly(styrene‐con‐butyl methacrylate) and poly(styrene‐co‐cyclohexyl methacrylate) always decrease. The calculated interaction energy for a copolymer–TMPC pair is negative and increases with the methacrylate content in the copolymer. This would seem to contradict the prediction of the binary interaction model, that systems with more favorable energetic interactions have higher LCSTs. A detailed inspection of lattice‐fluid theory was performed to explain such phase behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1288–1297, 2002  相似文献   

9.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

10.
We have successfully demonstrated the preparation of poly(n‐butyl acrylate)‐b‐polystyrene particles without any coagulation by two‐step emulsifier‐free, organotellurium‐mediated living radical emulsion polymerization (emulsion TERP) using poly(methacrylic acid) (PMAA)–methyltellanyl (TeMe) (PMAA30‐TeMe) (degree of polymerization of PMAA, 30) and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501). The final particle size was ~30 nm and second particle nucleation was not observed throughout the polymerization. Mn increased linearly in both steps with conversion and blocking efficiency was ~75%. PDI was improved by increasing radical entry frequency into each polymer particle due to an increase of the polymerization temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The kinetics of free‐radical emulsion polymerization of γ‐methyl‐α‐methylene‐γ‐butyrolactone (MeMBL), a renewable monomer related to methyl methacrylate, are presented in detail for the first time, and stable polymer latices are prepared. The effects of different reaction parameters on free‐radical emulsion polymerization of MeMBL are presented. Homogeneous nucleation is asserted to be the dominant path for particle formation. Miniemulsion copolymerization of MeMBL and styrene is also reported. In this case, the homogeneous nucleation process appears limited when using an oil soluble initiator. Both the RAFT miniemulsion polymerizations and RAFT bulk polymerizations are well controlled and narrow polydispersity copolymers are produced. Rate retardation is observed in the RAFT miniemulsion polymerizations compared with the free‐radical polymerization and RAFT bulk polymerizations and the possible causes of the retardation are discussed. The reactivity ratios of MeMBL and styrene in RAFT bulk copolymerization are also determined. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5929–5944, 2008  相似文献   

12.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

13.
Poly(styrene‐graft‐ethyl methacrylate) graft copolymer was prepared by atom transfer radical polymerization (ATRP) with poly(styrene‐cop‐chloromethyl styrene)s in various compositions as macroinitiator in the presence of CuCl/1,2‐dipiperidinoethane at 130 °C in N,N‐dimethylformamide. Both macroinitiators and graft copolymers were characterized by elemental analysis, IR, 1H and 13C NMR, and differential scanning calorimetry. 1,2‐Dipiperidinoethane was an effective ligand of CuCl for ATRP in the graft copolymerization. The controlled growth of the side chain provided the graft copolymers with polydispersities of 1.60–2.05 in the case of poly(styrene‐cop‐chloromethyl styrene) (62:38) macroinitiator. Thermal stabilities of poly(styrene‐graft‐ethyl methacrylate) graft copolymers were investigated by thermogravimetric analysis as compared with those of the macroinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 668–673, 2003  相似文献   

14.
The amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(acrylic acid)/polystyrene) (P(MMA‐co‐BIEM)‐g‐(PAA/PS)) were synthesized successfully by the combination of single electron transfer‐living radical polymerization (SET‐LRP), single electron transfer‐nitroxide radical coupling (SET‐NRC), atom transfer radical polymerization (ATRP), and nitroxide‐mediated polymerization (NMP) via the “grafting from” approach. First, the linear polymer backbones poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate) (P(MMA‐co‐BIEM)) were prepared by ATRP of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) and subsequent esterification of the hydroxyl groups of the HEMA units with 2‐bromoisobutyryl bromide. Then the graft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐poly(t‐butyl acrylate) (P(MMA‐co‐BIEM)‐g‐PtBA) were prepared by SET‐LRP of t‐butyl acrylate (tBA) at room temperature in the presence of 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO), where the capping efficiency of TEMPO was so high that nearly every TEMPO trapped one polymer radicals formed by SET. Finally, the formed alkoxyamines via SET‐NRC in the main chain were used to initiate NMP of styrene and following selectively cleavage of t‐butyl esters of the PtBA side chains afforded the amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(t‐butyl acrylate)/polystyrene) (P(MMA‐co–BIEM)‐g‐(PtBA/PS)). The self‐assembly behaviors of the amphiphilic heterograft copolymers P(MMA‐co–BIEM)‐g‐(PAA/PS) in aqueous solution were investigated by AFM and DLS, and the results demonstrated that the morphologies of the formed micelles were dependent on the grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The successful synthesis, characterization, and directed self‐assembly of a silicon‐containing block copolymer, poly(styrene‐block‐trimethylsilylisoprene) (P(S‐b‐TMSI)), which has much higher oxygen etch contrast than the de facto standard, poly(styrene‐block‐methyl methacrylate) is reported. A Sakurai, Grignard‐type coupling reaction provided the key monomer in good yield. Living anionic polymerization was employed to prepare the block copolymer, which has very low polydispersity. P(S‐b‐TMSI) was successfully ordered and oriented by directed self‐assembly. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
The precipitation of Fe3O4 from an aqueous solution with ammonium hydroxide produced nanoparticles that were coated with a layer of oleic acid [or, in some cases, poly(ethylene oxide) or poly(vinylpyrrolidone)] before their dispersion into the organic phase. The encapsulation of magnetite nanoparticles in poly(2‐hydroxyethyl methacrylate) or poly(2‐hydroxyethyl methacrylate‐co‐glycidyl methacrylate) microparticles was achieved by dispersion polymerization in toluene/2‐methylpropan‐1‐ol. Magnetic poly(glycidyl methacrylate) microparticles were obtained in the presence of poly(ethylene oxide) at the magnetite/monomer interface. The particles containing up to 20 wt % iron maintained their discrete nature and did not aggregate. The effect of the reaction medium polarity, the concentrations of the monomer, initiator, and stabilizer, and the temperature on the particle size, particle size distribution, and iron and oxirane group contents was studied. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1848–1863, 2003  相似文献   

17.
Monodisperse poly(D ,L ‐lactide) (PDLLA) microspheres were prepared by dispersion polymerization of D ,L ‐lactide in xylene/heptane (1/2, v/v) with poly[(dodecyl methacrylate)‐co‐(2‐hydroxyethyl methacrylate)] (P(DMA‐co‐HEMA)) as a dispersion stabilizer. P(DMA‐co‐HEMA) contains hydroxy groups, which act as an initiation group for pseudoanionic dispersion polymerization. The best coefficient of variation (CV) values concerning particle diameter distribution and the particle diameter of obtained PDLLA microspheres were 3.7% and 5.3 μm, respectively. The particle diameter decreased with increasing concentration of P(DMA‐co‐HEMA) and HEMA maintained low CV (<10%) values. As a result, monodisperse PDLLA microspheres ranging from 1.3 to 5.3 μm were obtained. In addition, it was found that monodisperse PDLLA microspheres were obtained by sufficient capture of growing polymers and monomers in the particle growth stage. Therefore, the HEMA concentration in P(DMA‐co‐HEMA) strongly affecting the capturing capability is the most important factor. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5230–5240, 2009  相似文献   

18.
The triblock copolymer poly(ϵ‐caprolactone)‐block‐poly[(methyl methacrylate)‐co‐styrene]‐block‐poly(ϵ‐caprolactone) was synthesized by a combination of coordination polymerization and controlled radical mechanism. The poly(ϵ‐caprolactone) prepolymers (PCLBP) were first obtained by coordination polymerization using benzopinacol as the initiator and aluminium triisopropoxide as the promoter at room temperature. It was determined by means of UV and NMR spectroscopy that the benzopinacolate groups are left intact in the PCLBP prepolymers; no isomerization was found. The benzopinacolate groups incorporated into the poly(ϵ‐caprolactone) then initiate the copolymerization of styrene (St) and methyl methacrylate (MMA) via a controlled radical mechanism at 95°C. The desired block copolymers were characterized by GPC, IR, UV and NMR spectroscopy in detail.  相似文献   

19.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Amphiphilic graft copolymers consisting of monomeric units of poly(ethylene glycol) monomethyl ether acrylate, lauryl or stearyl methacrylate, and 2‐hydroxyethyl methacrylate were synthesized and characterized. The effectiveness of these poly(ethylene glycol)‐containing graft copolymers in stabilizing styrene emulsion polymerization was evaluated. The polymerization rate (Rp) increases with increasing graft copolymer concentration, initiator concentration, or temperature. At a constant graft copolymer concentration, Rp increases, and the amount of coagulum decreases with the increasing hydrophilicity of graft copolymers. The polymerization system does not follow Smith–Ewart case II kinetics. The desorption of free radicals out of latex particles plays an important role in the polymerization kinetics. The overall activation energy and the activation energy for the radical desorption process are 85.4 and 34.3 kJ/mol, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1608–1624, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号