首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The well‐defined azoindazole‐containing homopolymer, poly(6‐{6‐[(4‐dimethylamino) phenylazo]‐indazole}‐hexyl methacrylate) (PDHMA), and amphiphilic diblock copolymer, poly({6‐[6‐(4‐dimethylamino)phenylazo]‐indazole}‐hexyl methacrylate)‐b‐poly(2‐(dimethylamino)ethylmethacrylate) (PDHMAmb‐PDMAEMAn), were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The homopolymer and amphiphilic diblock copolymer in CH2Cl2 exhibited intense fluorescence emission accompanied by trans–cis photoisomerization of azoindazole group under UV irradiation. The experiment results indicated that the intense fluorescence emission may be attributed to an inhibition of photoinduced electron transfer of the cis form of azoindazole. On the other hand, the intense fluorescence emission of amphiphilic diblock copolymers in water‐tetrahydrofuran mixture was observed, which increased with the volume ratio of water in the mixed solvent. The self‐aggregation behaviors of three amphiphilic diblock copolymers were examined by transmission electron microscopy, laser light scattering, and UV–vis spectra. The restriction of intramolecular rotation of the azoindazole groups in aggregates was considered as the main cause of aggregation‐induced fluorescence emission. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
Solution self‐assembly of amphiphilic “rod‐coil” copolymers, especially linear block copolymers and graft copolymers (also referred to as polymer brushes), has attracted considerable interest, as replacing one of the blocks of a coil‐coil copolymer with a rigid segment results in distinct self‐assembly features compared with those of the coil‐coil copolymer. The unique interplay between microphase separation of the rod and coil blocks with great geometric disparities can lead to the formation of unusual morphologies that are distinctly different from those known for coil‐coil copolymers. This review presents the recent achievements in the controlled self‐assembly of rod‐coil linear block copolymers and graft copolymers in solution, focusing on copolymer systems containing conjugated polymers, liquid crystalline polymers, polypeptides, and polyisocyanates as the rod segments. The discussions concentrate on the principle of controlling over the morphology of rod‐coil copolymer assemblies, as well as their distinctive optical and optoelectronic properties or biocompatibility and stimuli‐responsiveness, which afford the assemblies great potential as functional materials particularly for optical, optoelectronic and biological applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1459–1477  相似文献   

3.
A novel monomer, ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate, containing a photoisomerizable N?N group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate‐block‐ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate ( PMMA ‐ b ‐ PAzoMA ) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod‐like particles took place as a result of the reversible E‐Z photoisomerization of azobenzene segments in PMMA ‐ b ‐ PAzoMA . Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142–1148, 2010  相似文献   

4.
The well‐defined azobenzene‐containing homopolymers, poly{6‐(4‐phenylazophenoxy)hexyl methacrylate (AHMA)} (PAHMA), were synthesized via reversible addition fragmentation chain transfer polymerization (RAFT) in anisole solution using 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as the RAFT agent and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The first‐order kinetic plot of the polymerization and the linear dependence of molecular weights of the homopolymers with the relatively low polydispersity index values (PDIs ≤ 1.25) on the monomer conversions were observed. Furthermore, the amphiphilic diblock copolymer, poly{6‐(4‐phenylazophenoxy)hexyl methacrylate (AHMA)}‐b‐poly{2‐(dimethylamino)ethyl methacrylate (DMAEMA)} (PAHMA‐b‐PDMAEMA), was prepared with the obtained PAHMA as the macro‐RAFT agent. The structures and properties of the polymers were characterized by 1H NMR and GPC, respectively. Interestingly, the amphiphilic diblock copolymers in chloroform (CHCl3) solution (PAHMA23b‐PDMAEMA97 (4 × 10?5 M, Mn(GPC) = 18,400 g/mol, PDI = 1.48) and PAHMA28b‐PDMAEMA117 (6 × 10?5 M, Mn(GPC) = 19,300 g/mol, PDI = 1.51) exhibited the intense fluorescence emission at ambient temperature. Moreover, the fluorescent intensity of PAHMA‐b‐PDMAEMA in CHCl3 was sensitive to the ultraviolet irradiation at 365 nm, which increased within the first 10 min and later decreased when irradiation time was prolonged to 30 min or longer. The well distributed, self‐assembled micelles composed of azobenzene‐containing amphiphilic diblock copolymers, (PAHMA‐b‐QPDMAEMA)s (QPDMAEMA is quaternized PDMAEMA), in the mixed N,N‐dimethyl formamide (DMF)/H2O solutions were prepared. Their fluorescent intensities decreased with the increasing amount of water. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5652–5662, 2008  相似文献   

5.
In this article, a light and pH dual‐sensitive block copolymer PEG‐b‐poly(MPC‐Azo/DEA) was facilely prepared for the first time by azide‐alkyne click chemistry between amphiphilic block copolymer bearing pendant alkynyl group poly(ethylene glycol)‐poly(5‐methyl‐5‐propargylxycarbonyl‐1,3‐dioxane‐2‐one) (PEG‐b‐poly(MPC)) and two azide‐containing compounds azobenzene derivative (Azo‐N3) and 2‐azido‐1‐ethyl‐diethylamine (DEA‐N3). Light response of the polymeric nanoparticles benefits from the azobenzene segments and pH responsiveness is attributed to DEA moieties. The prepared copolymer could self‐assemble into spherical micelle particles. The morphological changes of these particles in response to dual stimuli were investigated by UV/vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Nile Red (NR) was utilized as probe, and fluorescence spectroscopy was served as an evidence for the enhanced release of cargos from polymeric nanoparticles under combined stimulation. Anticancer drug, DOX was loaded into the nanoparticles and the loaded‐DOX could be released from these nanoparticles under dual stimuli. MTT assays further demonstrated that PEG‐b‐poly(MPC) and PEG‐b‐poly(MPC‐Azo/DEA) were of biocompatibility and low toxicity against HepG2 cells as well as SMCC‐7721 cells. More importantly, the prepared DOX‐loaded nanoparticles exhibited good anticancer ability for the two cells. The synthesized light and pH dual‐sensitive biodegradable polymeric nanoparticles were expected to be platforms for precisely controlled release of encapsulated molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1773–1783  相似文献   

6.
A novel amphiphilic diblock copolymer, consisting of dendronized polymethacrylate‐b‐poly(ethylene oxide), was synthesized via atom transfer radical polymerization; from it, micellelike aggregates of various morphologies, prepared under near‐equilibrium conditions, were studied with transmission electron microscopy and scanning electron microscopy. The effects of various factors on the aggregate morphologies of the amphiphilic copolymer, such as the water content, the copolymer concentration, and the type of common solvent, were investigated systematically. The unique architecture of the block copolymer led to morphological variety and peculiarities such as dendritic and shuttle‐shaped aggregates, which could be attributed to the effective packing of the bulky side chains, that is, another driving force for the aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2291–2297, 2005  相似文献   

7.
An amphiphilic diblock copolymer composed of a photoresponsive dialkoxycyanostilbene polymethacrylate and poly(ethylene oxide) (PDACS‐b‐PEO) was synthesized and its photophysical and aggregation properties were investigated. The amphiphilic nature of the polymer caused it to self‐assemble in water, and dynamic light scattering studies indicated formation of spherical aggregates with an average size of 160 nm. Atomic force microscopy images of dried films cast from solutions containing the polymer aggregates revealed supramolecular aggregates with a spherical morphology. Photoisomerization of the stilbene chromophore in PDACS‐b‐PEO on UV irradiation resulted in the destruction of the self‐assembled superstructures which could be attributed both to change in shape of the chromophore from the linear trans isomer to the bent cis isomer which would hinder self‐aggregation of the molecules and the higher dipole moment of the cis isomer leading to a reduction of the hydrophobic nature of the stilbene containing block of PDACS‐b‐PEO. It was observed that hydrophobic dyes such as curcumin could be encapsulated within the hydrophobic interior of the spherical micellar aggregates from which the encapsulated dye could be released on UV irradiation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
This article reports on optically active core/shell nanoparticles constituted by chiral helical polymers and prepared by a novel approach: using self‐assembled polymer micelles as reactive nanoreactors. Such core/shell nanoparticles were composed of optically active helical‐substituted polyacetylene as the core and thermosensitive poly(N‐isopropylacrylamide) as the shell. The synthetic procedure is divided into three major steps: (1) synthesis of amphiphilic diblock copolymer bearing polymerizable C[tbond]C bonds via atom transfer radical polymerization, followed by (2) self‐assembly of the diblock copolymer to form polymer micelles; and (3) catalytic emulsion polymerization of substituted acetylene monomer conducted using the polymer micelles as reactive nanoreactors leading to the core/shell nanoparticles. The core/shell nanoparticles simultaneously exhibited remarkable optical activity and thermosensitivity. The facile, versatile synthesis methodology opens new approach toward preparing novel multifunctional core/shell nanoparticles.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The effects of solvency and mole fraction of azobenzene moieties (fPAzoMA) on the photoresponsive and fluorescence behaviors of poly(acrylic acid)‐block‐poly(6‐[4‐(4′‐methoxyphenylazo)phenoxy]hexyl methacrylate) (PAA‐PAzoMA) amphiphilic diblock copolymers were investigated using UV–vis spectroscopy and fluorescence spectroscopy. The photoresponsive behavior depended strongly on the solvency and fPAzoMA. When dissolved in a PAA‐selective solvent, PAA‐PAzoMA formed micelles with PAzoMA in the micelle core. The confinement of azobenzene moieties caused a steric hindrance, thereby markedly reducing the kinetics of photoisomerization compared with that of the unconfined PAA‐PAzoMA in a nonselective solvent. Additionally, PAA‐PAzoMA dissolved in the PAA‐selective solvent caused a blue shift of the maximum absorbance, suggesting the formation of H‐aggregates of azobenzene mesogens. The high H‐aggregate content substantially reduced the fluorescence emission. Consequently, the fluorescence emission of PAA‐PAzoMA in the nonselective solvent was more intense than that in the PAA‐selective solvent. Upon UV irradiation, the enhanced bent‐shaped cis isomers disturbed the compact packing of azobenzene mesogens, which substantially enhanced the fluorescence emission. Both the photoisomerization rate and fluorescence emission decreased with an increase in fPAzoMA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 793–803  相似文献   

10.
We describe herein the synthesis and self‐assembly characteristics of a doubly responsive AB diblock copolymer comprised of N‐isopropylacrylamide (NIPAM) and 4‐vinylbenzoic acid (VBZ). The AB diblock copolymer was prepared via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization in DMF employing a trithiocarbonate‐based RAFT agent. PolyNIPAM was employed as the macroRAFT agent. The NIPAM homopolymerization was shown to possess all the characteristics of a controlled process, and the blocking with VBZ was judged, by size exclusion chromatography, to be essentially quantitative. The NIPAM‐VBZ block copolymer was subsequently demonstrated to be able to form normal and inverse micelles in the same aqueous solution by taking advantage of the stimuli responsive characteristics of both building blocks. Specifically, and as judged by NMR spectroscopy and dynamic light scattering, raising the temperature to 40 °C (above the lower critical solution temperature of the NIPAM block), while at pH 12 results in supramolecular self‐assembly to yield nanosized species that are composed of a hydrophobic NIPAM core stabilized by a hydrophilic VBZ corona. Conversely, lowering the solution pH to 2.0 at ambient temperature results in the formation of aggregates in which the VBZ block is now hydrophobic and in the core, stabilized by the hydrophilic NIPAM block. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5864–5871, 2007  相似文献   

11.
Photoresponsive amphiphilic diblock poly(carbonate)s mPEG113‐b‐PMNCn with pendent o‐nitrobenzyl ester group were synthesized through ring‐opening polymerization (ROP) using 1,8‐diazabi‐cyclo[5.4.0]undec‐7‐ene (DBU) as catalyst and monomethoxy poly(ethylene glycol) (mPEG) as macroinitiator. In aqueous solution, the copolymers can self‐assemble to spherical micelles with a PC core and a PEG shell. The critical micelle concentration (CMC), size, and morphology of the micelles were demonstrated by means of fluorescence spectroscopy, transmission electron microscopes (TEM), and dynamic light scattering (DLS). Under UV light irradiation, the amphiphilic copolymer micelles disassembled because of the photocleavage of o‐NB ester, and the light‐controlled release behaviors of payload Nile red were further proved. This study provides a convenient way to construct smart poly(carbonate)s nanocarriers for controlled drug release. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2770–2780  相似文献   

12.
We report an efficient way, sequential double click reactions, for the preparation of brush copolymers with AB block‐brush architectures containing polyoxanorbornene (poly (ONB)) backbone and poly(ε‐caprolactone) (PCL), poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA) side chains: poly(ONB‐g‐PMMA)‐b‐poly(ONB‐g‐PCL) and poly(ONB‐g‐PtBA)‐b‐poly(ONB‐g‐PCL). The living ROMP of ONB affords the synthesis of well‐defined poly(ONB‐anthracene)20b‐poly (ONB‐azide)5 block copolymer with anthryl and azide pendant groups. Subsequently, well‐defined linear alkyne end‐functionalized PCL (PCL‐alkyne), maleimide end‐functionalized PMMA (PMMA‐MI) and PtBA‐MI were introduced onto the block copolymer via sequential azide‐alkyne and Diels‐Alder click reactions, thus yielding block‐brush copolymers. The molecular weight of block‐brush copolymers was measured via triple detection GPC (TD‐GPC) introducing the experimentally calculated dn/dc values to the software. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We present here the synthesis of two kinds of amphiphilic block copolymers, a diblock copolymer MPEG‐b‐PTAm and a triblock copolymer MPEG‐b‐PLA‐b‐PTAm, which can self‐assemble into micelles with nitroxyl radicals‐containing PTAm segment in the core. The structure of the block copolymers was characterized by 1H NMR and GPC. Dynamic laser light scattering and transmission electron microscopy were used to study the micellar behavior of the two block copolymers in aqueous solution. The micelles carrying nitroxyl radicals in the core can generate electron paramagnetic resonance, which is stable for a period of time up to 8 min even in the presence of reducing reagent such as ascorbic acid. The enhanced stability against the reducing agent was ascribed to the inaccessibility of the nitroxyl radical core placed in the interior of the micelles. Combined with the biocompatibility, these micelles were promising to be used as the EPR probes for bioimaging in vivo. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
The preparation of polyolefin‐based stereoregular diblock copolymers by postpolymerization of ethenyl‐capped syndiotactic polypropylene‐based propylene/norbornene copolymer (sPP‐based P‐N copolymer) led to the successful generation of a structurally uniform stereoregular diblock copolymer for self‐assembly studies. The ethenyl‐capped prepolymer was prepared by conducting propylene/norbornene copolymerization in the presence of Me2C(Cp)(Flu)ZrCl2/MAO. Ozonolysis of ethenyl‐capped sPP‐based P‐N copolymer provided the formyl group end‐capped, end‐functionalized prepolymer with a quantitative functional group conversion ratio. Subsequently, connecting the formyl end‐group of the stereoregular prepolymer by coupling with living anionic polystyrene resulted in the high yield production of stereoregular diblock copolymer (sPP‐based P‐N‐block‐polystyrene), which is difficult to prepare by other methods. The resulting stereoregular diblock copolymer possesses precise chemical architecture to self‐organize into consistent nanostructures as evidenced by transmission electron microscopy and small angle X‐ray scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4843–4856, 2008  相似文献   

15.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

16.
Amphiphilic, biodegradable block glycopolymers based on poly(ε‐caprolactone) (PCL) with various pendent saccharides were synthesized by combination of ring‐opening polymerization (ROP) and “click” chemistry. PCL macroinitiators obtained by ROP of ε‐caprolactone were used to initiate the ROP of 2‐bromo‐ε‐caprolactone (BrCL) to get diblock copolymers, PCL‐b‐PBrCL. Reaction of the block copolymers with sodium azide converted the bromine groups in the PBrCL block to azide groups. In the final step, click chemistry of alkynyl saccharides with the pendent azide groups of PCL‐b‐PBrCL led to the formation of the amphiphilic block glycopolymers. These copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. The self‐assembly behavior of the amphiphilic block copolymers was investigated using transmission electron microscopy and atomic force microscope, spherical aggregates with saccharide groups on the surface were observed, and the aggregates could bind reversibly with Concanavalin A. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3583–3594, 2009  相似文献   

17.
This article reports on studies regarding the photoisomerization kinetics and self‐assembly behaviors of two photoresponsive diblock copolymers, poly(4‐acetoxystyrene)‐block‐poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl acrylate] (poly(StO54b‐Cazo9) and poly(StO54b‐Cazo5)), which dissolved in a THF/H2O solution through two‐step reverse addition‐fragmentation transfer polymerization. We examined the effect of heating methods (i.e., conventional and microwave heating) on the polymerization kinetics of a 4‐acetoxystyrene‐based macrochain transfer agent (StO macro‐CTA). The kinetics studies on the homopolymerization of StO by using microwave heating demonstrated controllable characteristics with relatively narrow polydispersities at ~1.14. The diblock copolymers exhibited moderate thermal stability, with thermal decomposition temperatures greater than 343.3 °C, suggesting that the enhancement of the thermal stability was due to the incorporation of azobenzene segments into block copolymers. Poly(StO54b‐Cazo9) showed lower photoisomerization rate constants (kt = 0.039 s?1) compared with Cazo monomer (kt = 0.097 s?1). Micellar aggregates with a mean diameter of approximately 238.3 nm were formed by gradually adding water to the THF solution (water content = 10 vol %), and are shown in SEM and TEM images of the diblock copolymer. The results of this study contribute to the literature regarding the development of photoresponsive polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3107–3117  相似文献   

18.
Two chiral amphiphilic diblock copolymers with different relative lengths of the hydrophobic and hydrophilic blocks, poly(6‐O‐p‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose)‐b‐poly(N‐isopropylacrylamide) or poly(VBCPG)‐b‐poly(NIPAAM) and poly(20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one methacrylate)‐b‐poly(N‐isopropylacrylamide) or poly(MAC‐HPD)‐b‐poly(NIPAAM) were synthesized via consecutive reversible addition‐fragmentation chain‐transfer polymerizations of VBCPG or MAC‐HPD and NIPAAM. The chemical structures of these diblock copolymers were characterized by 1H nuclear magnetic resonance spectroscopy. These amphiphilic diblock copolymers could self‐assemble into micelles in aqueous solution, and the morphologies of micelles were investigated by transmission electron microscopy. By comparison with the lower critical solution temperatures (LCST) of poly(NIPAAM) homopolymer in deionized water (32 °C), a higher LCST of the chiral amphiphilic diblock copolymer (poly(VBCPG)‐b‐poly(NIPAAM)) was observed and the LCST increased with the relative length of the poly(VBCPG) block in the copolymer from 35 to 47 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7690–7701, 2008  相似文献   

19.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

20.
Hepatoma‐targeting micelles were successfully prepared by self‐assembly of galactose‐functionalized ribavirin‐containing amphiphilic random copolymer as novel drug delivery vehicles. The ribavirin‐containing random copolymer with galactose as the targeting ligand was facilely synthesized by combining enzymatic transesterification with radical polymerization and fully characterized by FTIR, NMR, and GPC. The formation of micelle‐type aggregates from the random copolymer was verified by UV–vis and fluorescence spectroscopy using pyrene as the guest molecule. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) experiments revealed that the micelles were well dispersed as spherical nanoparticles in water, whose hydrodynamic diameter was 217 ± 19 nm. Their biological recognition to fluorescein‐labeled peanut agglutinin investigated by confocal laser scanning microscopy (CLSM) proved the existence of hydrophilic galactose targeting moieties on the surface of micelles. Cell cytotoxicity tests and the inhibition experiment of galactose performed by MTT assay showed that the micelles had evident targeting function to hepG2 cells and the galactose moieties on the surface of micelles mediated cellar uptake of micelles. In vitro release studies indicated that ribavirin could be slowly released from the copolymer with pseudo zero‐order kinetics. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2734–2744, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号