首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Four new photoinitiators (PI's) containing various phenylamine-based groups as chromophores and oxime ester (OXE) as initiating groups are proposed for the free radical polymerization, the cationic polymerization, and interpenetrated polymer networks upon visible light exposure using a light emitting diodes at 405 nm. These compounds showed outstanding polymerization photoinitiation ability, that is, high-polymerization rates and good final reactive function conversions were obtained. The chemical mechanisms by which these OXE's generate reactive species were investigated through different techniques including real-time Fourier transform infrared spectroscopy, UV–visible spectroscopy, fluorescence (time-resolved or steady state) as well as cyclic voltammetry. Markedly, the proposed structures can be used as thermal initiators indicating all of them can be polymerized under suitable reaction temperature. In addition, due to their high efficiency, these optimized PI's were found to be useful @405 nm for both direct laser write and 3D printing applications.  相似文献   

3.
In this article, new compounds based on the carbazole scaffold (DMs = DM1 and DM2, constituted by a carbazole unit connected on positions 3 and 6 to a two 4,4′‐dimethoxydiphenylamine groups and differing by the substituent present on the nitrogen heteroatom of the carbazole core) were synthesized and proposed as high‐performance visible light photoinitiators/photosensitizers for both the free‐radical polymerization of methacrylates and the cationic polymerization of epoxides upon visible light exposure using LED@405 nm. Remarkably, DM2 leads to higher final conversions than DM1. In order to study the photophysical and photochemical properties of the carbazole derivatives, different parameters were taken into account such as the light absorption, the steady‐state photolysis, and the fluorescence spectroscopy. Using different techniques such as fluorescence quenching, redox behavior, and cyclic voltammetry, we are able to discuss the photosensitization/photoinitiation reactions providing a full coherent picture of the involved chemical mechanisms. The photosensitization of the carbazole derivatives occurred predominantly via singlet excited states at the rate of the diffusion limit. Upon exposure to laser diode at 405 nm, DMs show high performance in initiating systems for 3D resins. Remarkably, DM2 can also be used in photocomposite synthesis using light‐emitting diode conveyor. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2081–2092  相似文献   

4.
Novel thioxanthone (TX) derivatives are used as versatile photoinitiators upon visible light‐emitting diode (LED; e.g., 405, 425, and 450 nm) exposure. The mechanisms for the photochemical generation of reactive species (i.e., cations and free radicals) produced from photoinitiating systems based on the photoinitiator and an iodonium salt, tris(trimethylsilyl)silane, or an amine, were studied by UV–vis spectroscopy, fluorescence, cyclic voltammetry, steady‐state photolysis, and electron spin resonance spin‐trapping techniques. The reactive species are particularly efficient for cationic, free radical, hybrid, and thiol‐ene photopolymerizations upon LED exposure. The optimized photoinitiating systems exhibit higher efficiency than those of reference systems (i.e., isopropyl TX‐based photoinitiating systems), especially in the visible range. According to their beneficial features, these photoinitiating systems have considerable potential in photocuring applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4037–4045  相似文献   

5.
The cations and radicals produced in aminothiazonaphthalic anhydride derivatives (ATNAs) combined with an iodonium salt, N‐vinylcarbazole, amine, or chloro triazine initiate the ring‐opening cationic polymerization of epoxides and the free radical polymerization of acrylates under LEDs at 405 or 455 nm. The photoinitiating ability of these novel photoinitiating systems is higher than that of the well‐known camphorquinone‐based systems. An example of the high reactivity of the new proposed photoinitiator is also provided in resins for 3D‐printing using a LED projector@405 nm. The chemical mechanisms are investigated by steady‐state photolysis, cyclic voltammetry, fluorescence, laser flash photolysis, and electron spin resonance spin‐trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1189–1196  相似文献   

6.
In this paper, nine organic compounds based on the coumarin scaffold and different substituents were synthesized and used as high-performance photoinitiators for free radical photopolymerization (FRP) of meth(acrylate) functions under visible light irradiation using LED at 405 nm. In fact, these compounds showed a very high initiation capacity and very good polymerization profiles (both high rate of polymerization (Rp) and final conversion (FC)) using two and three-component photoinitiating systems based on coum/iodonium salt (0.1%/1% w/w) and coum/iodonium salt/amine (0.1%/1%/1% w/w/w), respectively. To demonstrate the efficiency of the initiation of photopolymerization, several techniques were used to study the photophysical and photochemical properties of coumarins, such as: UV-visible absorption spectroscopy, steady-state photolysis, real-time FTIR, and cyclic voltammetry. On the other hand, these compounds were also tested in direct laser write experiments (3D printing). The synthesis of photocomposites based on glass fiber or carbon fiber using an LED conveyor at 385 nm (0.7 W/cm2) was also examined.  相似文献   

7.
Two D‐π‐A‐type 2,2,2‐trifluoroacetophenone derivatives, namely, 4′‐(4‐( N,N‐diphenyl)amino‐phenyl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Ben) and 4′‐(4‐(7‐(N,N‐diphenylamino)‐9,9‐dimethyl‐9H‐fluoren‐2‐yl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Flu), are developed as high‐performance photoinitiators combined with an amine or an iodonium salt for both the free‐radical polymerization of acrylates and the cationic polymerization of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 450 nm). The photochemical mechanisms are investigated by UV‐Vis spectra, molecular‐orbital calculations, fluorescence, cyclic voltammetry, photolysis, and electron‐spin‐resonance spin‐trapping techniques. Compared with 2,2,2‐trifluoroacetophenone, both photoinitiators exhibit larger redshift of the absorption spectra and higher molar‐extinction coefficients. PI‐Ben and PI‐Flu themselves can produce free radicals to initiate the polymerization of acrylate without any added hydrogen donor. These novel D‐π‐A type trifluoroacetophenone‐based photoinitiating systems exhibit good efficiencies (acrylate conversion = 48%–66%; epoxide conversion = 85%–95%; LEDs at 365–450 nm exposure) even in low‐concentration initiators (0.5%, w/w) and very low curing light intensities (1–2 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1945–1954  相似文献   

8.
The purposes of this paper are moving toward (a) the development of a new series of photoinitiators (PIs) which are based on the keto-coumarin (KC) core, (b) the introduction of light-emitting diodes (LEDs) as inexpensive and safe sources of irradiation, (c) the study of the photochemical mechanisms through which the new PIs react using different techniques such as Fourier transform infrared, UV–visible or fluorescence spectroscopy, and so on, (d) the use of such compounds (presenting good reactivity and excellent photopolymerization initiating abilities) for two specific and high added value applications: 3D printing (@405 nm) and preparation of thick glass fiber photocomposites with excellent depth of cure, and finally (e) the comparison of the performance of these KC derivatives versus other synthesized coumarin derivatives. In this study, six well-designed KC derivatives ( KC-C , KC-D , KC-E , KC-F , KC-G , and KC-H ) are examined as high-performance visible-light PIs for the cationic polymerization of epoxides as well as the free-radical polymerization of acrylates upon irradiation with LED@405 nm. Excellent polymerization rates are obtained using two different approaches: a photo-oxidation process in combination with an iodonium (Iod) salt and a photo-reduction process when associated with an amine (N-phenylglycine or ethyl 4-(dimethylamino)benzoate). High final reactive conversions were obtained. A full picture of the involved photochemical mechanisms is provided.  相似文献   

9.
The development of iron complexes for the photoredox catalysis is a huge challenge. Indeed, Iron complexes can be ideal candidates due to their potential visible light absorption and redox properties but also because they are less toxic, inexpensive and environmentally friendly compared to other catalysts. In the present paper, a series of novel iron complexes have been synthesized and utilized to initiate the free radical promoted cationic polymerization of epoxides or the free radical polymerization of acrylates through photoredox catalysis processes upon exposure to near UV (385 nm) or visible violet (405 nm) light emitting diodes (LEDs). When combined with an iodonium salt and N‐vinylcarbazole, the iron complex‐based photoinitiating systems are able to generate radicals, cations, and radical cations. The initiation efficiency is investigated through real‐time Fourier transform infrared spectroscopy and a satisfactory initiating ability is found. The mechanisms for the generation of the reactive initiating species through photoredox catalysis are studied by different methods (steady state photolysis, cyclic voltammetry and electron spin resonance spin trapping techniques) and discussed in detail. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2247–2253  相似文献   

10.
利用吩噻嗪衍生物的供电子能力及紫外吸收强的特点, 通过引入推-拉电子结构, 设计并合成了4种D-π-A型吩噻嗪席夫碱类可见光引发剂, 并利用核磁共振氢谱和高分辨质谱表征了其结构. 该系列光引发剂在350~450 nm范围内具有摩尔消光系数达104 L·mol-1·cm-1的较强吸收, 与商品化Ⅱ型可见光引发剂硫杂蒽酮(ITX)相比, 其与405 nm LED光源具有更好的匹配性, 与碘鎓盐(Iod)组成的复合光引发体系也具有更高的引发效率和交联基团转化率. 通过光解、 电子自旋共振波谱和循环伏安(CV)实验证明了吩噻嗪席夫碱可见光引发剂与Iod复合光引发体系的光致电子转移(PET)机理. 最后, 利用吩噻嗪席夫碱可见光引发剂/碘鎓盐复合引发体系, 实现了光致发光器件的数字光处理(DLP)3D打印.  相似文献   

11.
Iodonium butyltriphenylborate salts (A I+ Ar′Ph3B R), (Bu) were found to be more efficient than iodonium tetraphenylborate salts (RPh) when used as photoinitiators for the polymerization of acrylates. Relative photodecomposition rates were also different. It was found from a study of the photoreaction of iodonium borate salts with a model monomer, methyl methacrylate, that iodonium butyltriphenylborate salts simultaneously produce a butyl radical from the borate anion and an aryl radical from the iodonium cation upon irradiation. Both radicals initiate polymerization. Iodonium tetraphenylborate salts were found to release an aryl radical, but only from the iodonium cation. Iodonium borate salts exhibit strong absorption below 300 nm with a tail absorption above 400 nm. Thus, iodonium butyltriphenyl borate salts are efficient photoinitiators even when used with visible light. When a photosensitizer such as 5,7-diiodo-3-butoxy-6-fluorone is employed, iodonium butyltriphenylborate salts are rendered much more efficient for visible light photopolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1667–1677, 1998  相似文献   

12.
开发高效的双光子引发剂是提升双光子聚合速度的关键。本文基于光致脱羧机制,设计并合成了两种以共轭香豆素作为生色团、肟酯作为引发基团的双光子引发剂,并通过实验测试结合模拟计算对该类引发剂的光物理和光化学行为进行了研究。结果表明,该类引发剂在400~500 nm区域具有较强吸收,在LED可见光辐照下发生分解,具有光漂白特性,光解后释放的活性种可引发丙烯酸酯类单体聚合。利用双光子三维微纳成型技术,该类香豆素肟酯化合物可有效用于构建高分辨率的三维微纳结构。并通过量子化学计算,对该类引发剂的引发机理进行了探讨。  相似文献   

13.
Even though many organic dyes have been reported as photoinitiators/photosensitizers for free radical polymerization in the literature, the design and development of novel photoinitiating systems based on organic dyes adaptable for visible light irradiation, for example, 405 nm LED and sunlight still remains challenging. Recently, major achievements in the development of high-performance photoinitiating systems based on organic dyes as light-harvesting compounds and their uses as photoinitiators for photopolymerization under visible-light irradiation have clearly emerged, giving rise to abundant literature. In this review, an overview of the recently synthesized chromophores belonging to various families of organic dyes and used as photoinitiators of polymerization during the 2018–2021 period are presented and classified. Recent works have resulted in the development of new chromophores exhibiting remarkable visible light absorption properties and excellent photoinitiation abilities upon irradiation with LEDs and/or sunlight in free radical photopolymerization processes. These developments notably indicate that sunlight has the advantages of being a cheap, unlimited, broad emission spectrum, and energy-saving light source capable to be an efficient substitute to artificial light sources. The newly developed dye-based photoinitiating systems designed to initiate visible-light-induced photopolymerization processes are likely to expand the scope of application of photopolymerization in modern sciences and technologies.  相似文献   

14.
Herein, thirteen ketone derivatives composed of different cyclohexanone cores and peripheral moieties are designed, among which 10 ketones have never been synthesized before. These ketones are proposed as high-performance photoinitiators for both free radical polymerizations and cationic polymerizations under soft conditions (visible LED@405 nm irradiation at room temperature). In combination with an amine and an iodonium salt (Iod), these ketones could be used in three−component photoinitiating systems to initiate the free radical polymerization of acrylates with distinct final conversions, among which the ketone−1/amine/Iod combination proved to be the most efficient one. Besides, the ketone−1/Iod two−component system also showed a remarkable photoinitiation ability for the cationic polymerization of epoxides. The photochemical sensitivity of ketone−1 in the presence of an amine and an iodonium salt was systematically investigated by steady state photolysis and excited state fluorescence quenching characterizations, respectively. Interestingly, macroscopic 3D patterns with excellent spatial resolution could be generated using the ketone−1/amine/Iod photoinitiating system for the free radical polymerization of acrylates. This high performance is also found useful to overcome the light penetration issue for the access to filled samples (silica) and the preparation of composites.  相似文献   

15.
Three novel types of thiophene‐containing oxime sulfonates with a big π‐conjugated system were reported as non‐ionic photoacid generators. The irradiation of the newly synthesized photoacid generators using near UV–visible light‐emitting diodes (LEDs) (365–475 nm) results in the cleavage of two weak N O bonds in single molecules, which lead to the generation of different sulfonic acids in good quantum and chemical yields. The mechanism for the N O bond cleavage for acid generation was supported by the UV–visible spectra and real‐time 1H NMR spectra. They are developed as high‐performance photoinitiators without any additives for the cationic polymerization of epoxide and vinyl ether upon exposure to near‐UV and visible LEDs (365–475 nm) at low concentration. In the field of photopolymerization, especially visible light polymerization, it has great potential for application. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 776–782  相似文献   

16.
Silyl glyoxylates are proposed here as high‐performance photoinitiators (PIs) for the hybrid polymerization of cationic and radical monomers. Recently, silyl glyoxylates were reported as a new class of high‐performance Type I photoinitiators for free radical polymerization under air upon exposure to different near‐UV and blue LEDs. In this article, we report this new class of photoinitiators to initiate cationic polymerization in combination with an iodonium salt. This system can also be used to initiate simultaneously free radical and cationic polymerizations, for example, for the free radical/cationic hybrid polymerization and for the synthesis of interpenetrating polymer networks. The system silyl glyoxylate/iodonium exhibits excellent polymerization performances and exceptional bleaching properties compared to other well established photoinitiators (e.g., camphorquinone). Furthermore, a hybrid monomer is also introduced in this article (2‐vinyloxyethoxyethyl methacrylate [VEEM]) leading to a huge improvement of the mechanical properties of the final polymer through hybrid polymerization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1420–1429  相似文献   

17.
Only one naphthalic anhydride derivative has been reported as light sensitive photoinitiator, this prompted us to further explore the possibility to prepare a new family of photoinitiators based on this scaffold. Therefore, eight naphthalic Naphthalic anhydride derivatives (ANH1‐ANH8) have been prepared and combined with an iodonium salt (and optionally N‐vinylcarbazole) or an amine (and optionally 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine) to initiate the cationic polymerization of epoxides and the free radical polymerization of acrylates under different irradiation sources, that is, very soft halogen lamp (~ 12 mW cm?2), laser diode at 405 nm (~1.5 mW cm?2) or blue LED centered at 455 nm (80 mW cm?2). The ANH6 based photoinitiating systems are particularly efficient for the cationic and the radical photopolymerizations, and even better than that of the well‐known camphorquinone based systems. The photochemical mechanisms associated with the chemical structure/photopolymerization efficiency relationships are studied by steady state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin‐trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2860–2866  相似文献   

18.
New thiopyrylium and pyrylium salt‐based photoinitiating systems for visible light induced free radical polymerization (FRP) or free radical promoted cationic polymerization (FRPCP) under visible lights are presented. The reaction mechanisms are investigated by laser flash photolysis and the structure/reactivity trend is discussed. The abilities of two different classes of coinitiators are investigated (thiols/disulfides and silanes). In FRP, upon irradiation with a xenon lamp (λ > 390 nm), the (thio)pyrylium salts in combination with thiols or disulfides lead to very high polymerization rates, compared to the reference eosin Y/methyldiethanolamine system. In FRPCP, silanes are found much better coinitiators: a high efficiency of the photopolymerization under air is noted. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7369–7375, 2008  相似文献   

19.
Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red‐shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20–1000 fold factor) are found. These compounds are highly efficient light‐harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures.  相似文献   

20.
This study explored the abilities of 1‐(9‐anthrylmethyloxy)‐2‐pyridone and related compounds, which absorb long‐wavelength light (>350 nm), to photochemically initiate radical and cationic polymerizations. It was found that the irradiation of the title compounds initiates the radical polymerization of styrene whereas the cationic polymerization of oxetane proceeds in the presence of these photoinitiators to a negligible extent. The behavior of 9‐anthrylmethyloxyl and amidyl radicals in the photopolymerization process of styrene was discussed based on 1H NMR, UV, and fluorescence spectral data. In addition, the photoinitiation ability of the anthrylmethyloxyl end group was also investigated by using its model compound. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2859–2865, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号