首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New polynuclear zinc complexes containing tridentate Schiff base ligands were successfully synthesized and fully characterized. The solid‐state structure of the complexes was determined using single crystal X‐ray diffraction. The complexes display a tetranuclear cubane‐like core structure [Zn4O4] and sowed good catalytic activity towards the ring‐opening polymerization (ROP ) of rac‐lactide (rac‐LA ) and ε‐caprolactone (ε‐CL ) under solvent‐free conditions. The polylactic acid (PLA ) obtained from rac‐LA showed isotactic enrichment, as proved by homonuclear decoupled 1H‐NMR analysis. These complexes also showed good activity and superior control towards the ROP of rac‐LA and ε‐CL in the presence of benzyl alcohol as a co‐initiator. Furthermore, kinetic studies demonstrated that the ROP of rac‐LA and ε‐CL has a first order dependence on both monomer (rac‐LA and ε‐CL ) and catalyst concentration.  相似文献   

2.
Aluminum‐based salen and salan complexes mediate the ring‐opening polymerization (ROP) of rac‐β‐butyrolactone (β‐BL), rac‐lactide, and ε‐caprolactone. Al‐salen and Al‐salan complexes exhibit excellent control over the ROP of rac‐β‐butyrolactone, yielding atactic poly(3‐hydroxybutyrate) (PHB) with narrow PDIs of <1.15 for Al‐salen and <1.05 for Al‐salan. Kinetic studies reveal pseudo‐first‐order polymerization kinetics and a linear relationship between molecular weight and percent conversion. These complexes also mediate the immortal ROP of rac‐β‐BL and rac‐lactide, through the addition of excess benzyl alcohol of up to 50 mol eq., with excellent control observed. A novel methyl/adamantyl‐substituted Al‐salen system further improves control over the ROP of rac‐lactide and rac‐β‐BL, yielding atactic PHB and highly isotactic poly(lactic acid) (Pm = 0.88). Control over the copolymerization of rac‐lactide and rac‐β‐BL was also achieved, yielding poly(lactic acid)‐co‐poly(3‐hydroxybutyrate) with narrow PDIs of <1.10. 1H NMR spectra of the copolymers indicate a strong bias for the insertion of rac‐lactide over rac‐β‐BL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Ring‐opening polymerization of rac‐ and meso‐lactide initiated by indium bis(phenolate) isopropoxides {1,4‐dithiabutanediylbis(4,6‐di‐tert‐butylphenolate)}(isopropoxy)indium ( 1 ) and {1,4‐dithiabutanediylbis(4,6‐di(2‐phenyl‐2‐propyl)phenolate)}(isopropoxy)indium ( 2 ) is found to follow first‐order kinetics for monomer conversion. Activation parameters ΔH? and ΔS? suggest an ordered transition state. Initiators 1 and 2 polymerize meso‐lactide faster than rac‐lactide. In general, compound 2 with the more bulky cumyl ortho‐substituents in the phenolate moiety shows higher polymerization activity than 1 with tert‐butyl substituents. meso‐Lactide is polymerized to syndiotactic poly(meso‐lactides) in THF, while polymerization of rac‐lactide in THF gives atactic poly(rac‐lactides) with solvent‐dependent preferences for heterotactic (THF) or isotactic (CH2Cl2) sequences. Indium bis(phenolate) compound rac‐(1,2‐cyclohexanedithio‐2,2′‐bis{4,6‐di(2‐phenyl‐2‐propyl)phenolato}(isopropoxy)indium ( 3 ) polymerizes meso‐lactide to give syndiotactic poly(meso‐lactide) with narrow molecular weight distributions and rac‐lactide in THF to give heterotactically enriched poly(rac‐lactides). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4983–4991  相似文献   

4.
Alkaline earth (Ae) metal complexes of the aminophosphine borane ligand are highly active and iso‐selective catalysts for the ring‐opening polymerization (ROP) of rac‐lactide (LA). The polymerization reactions are well controlled and produce polylactides with molecular weights that are precise and narrowly distributed. Kinetic studies reveal that the ROP of rac‐LA catalyzed by all Ae metal complexes had a first‐order dependency on LA concentration as well as catalyst concentration. A plausible reaction mechanism for Ae metal complex‐mediated ROP of rac‐LA is discussed, based on controlled kinetic experiments and molecular chain mobility.  相似文献   

5.
The ionic [Ti33‐OPri)2(µ‐OPri)3(OPri)6][FeCl4] halo‐alkoxide ( A ) was investigated for its activity towards the bulk polymerization of rac‐lactide (rac‐LA) and ?‐caprolactone (?‐CL) in various temperatures, monomer/ A molar proportions, and reaction times. The reactivity of A in the ring‐opening polymerization (ROP) of both monomers is mainly due to the cationic [Ti3(OPri)11]+ unity and proceeds through the coordination–insertion mechanism. Molecular weights ranging from 6,379 to 13,950 g mol?1 and PDI values varying from 1.22 to 1.52 were obtained. Results of ROP kinetic studies for both ?‐CL and rac‐LA confirm that the reaction rates are first‐order with respect to monomers. The production of poly(?‐caprolactone) shows a higher sensitivity of the reaction rate to temperature, while the polymerization of rac‐LA is slower and more dependent on the thermal stability of the active species during the propagation step. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2509–2517  相似文献   

6.
Phosphido‐diphosphine Group 3 metal complexes 1–4 [(o‐C6H4PR2)2P‐M(CH2SiMe3)2; R = Ph, 1 : M = Y, 2 : M = Sc; R = iPr, 3 : M = Y, 4 : M = Sc] are very efficient catalysts for the ring‐opening polymerization (ROP) of cyclic esters such as ε‐caprolactone (ε‐CL), L ‐lactide, and δ‐valerolactone under mild polymerization conditions. In the ROP of ε‐CL, complexes 1–4 promote quantitative conversion of high amount of monomer (up to 3000 equiv) with very high turnover frequencies (TOF) (~4 × 104 molCL/molI h) showing a catalytic activity among the highest reported in the literature. The immortal and living ROP of ε‐CL and L ‐lactide is feasible by combining complexes 1–4 with 5 equiv of 2‐propanol. Polymers with controlled molecular parameters (Mn, end groups) and low polydispersities (Mw/Mn = 1.05–1.09) are formed as a result of fast alkoxide/alcohol exchange. In the ROP of δ‐valerolactone, complexes 1–4 showed the same activity observed for lactide (L ‐ and D ,L ‐lactide) producing high molecular weight polymers with narrow distribution of molar masses. Complexes 1–4 also promote the ROP of rac‐β butyrolactone affording atactic low molecular weight poly(hydroxybutyrate) bearing unsaturated end groups probably generated by elimination reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Yttrium [amino‐alkoxy‐bis(phenolate)]amido complexes have been used for the ring‐opening polymerization (ROP) of racemic alkyl β‐malolactonates (4‐alkoxycarbonyl‐2‐oxetanones, rac‐MLARs) bearing an allyl (All), benzyl (Bz) or methyl (Me) lateral ester function. The nature of the ortho‐substituent on the phenolate rings in the metal ancillary dictated the stereocontrol of the ROP, and consequently the syndiotactic enrichment of the resulting polyesters. ROP promoted by catalysts with halogen (Cl, Br)‐disubstituted ligands allowed the first reported synthesis of highly syndiotactic PMLARs (Pr ≥ 0.95); conversely, catalysts bearing bulky alkyl and aryl ortho‐substituted ligands proved largely ineffective. All polymers have been characterized by 1H and 13C{1H} NMR spectroscopy, MALDI‐ToF mass spectrometry and DSC analyses. Statistical and thermal analyses enabled the rationalization of the chain‐end control mechanism. Whereas the stereocontrol of the polymerization obeyed a Markov first‐order (Mk1) model for the ROP of rac‐MLABz and rac‐MLAAll, the ROP of rac‐MLAMe led to a chain end‐control of Markov second‐order type (Mk2). DFT computations suggest that the high stereocontrol ability featured by catalysts bearing Cl‐ and Br‐substituted ligands does not likely originate from halogen bonding between the halogen substituent and the growing polyester chain.  相似文献   

8.
Zinc complexes supported by tertiary 1,3,5‐triazapenta‐1,3‐dienate ligand (L1) and N ‐benzoyl‐N′ ‐arylbenzamidinate [aryl =2,6‐diisopropylphenyl (L2), phenyl (L3)] ligands have been synthesized and characterized. The reaction of L1H with ZnEt2 affords a mononuclear zinc complex [L1ZnEt] ( 1 ) in good yield. Tetra nuclear zinc complex [(L1)2Zn4O(OAc)4] ( 2 ) is prepared by treating L1H with one equivalent of Zn(OAc)2 in toluene. Further, dinuclear zinc complexes [L2ZnEt]2 ( 3 ) and [L3ZnEt]2 ( 4 ) are obtained in good yields from L2H and L3H with ZnEt2 in toluene respectively. The complexes 1–4 have been characterized by 1H/13C NMR spectroscopy and single crystal X‐ray diffraction studies. All of the complexes have been explored for their catalytic activity toward the ring‐opening polymerization (ROP) of ε ‐caprolactone. It has been found that complex 1 is an active catalyst for the polymerization of ε ‐caprolactone in presence of a cocatalyst benzyl alcohol (BnOH). While complex 2 is as active as 1 there is no need for a cocatalyst for the polymerization to proceed. Dinuclear zinc complexes 3 and 4 show very high activity for the ROP of ε ‐caprolactone (CL) and rac ‐lactide (LA) without requiring a cocatalyst. The resultant polymers are found to have very high molecular weight (M n = 296 X 103 g mol−1) and relatively narrow polydispersity index compared to 1 and 2 .  相似文献   

9.
The title compound, [Co(C18H23N10)](BF4)2·H2O, is the result of complexing a Co cation (initially in a CoII state) with tris[2‐(1H‐imidazol‐2‐ylmethyleneamino)ethyl]amine (L), obtained by a condensation process involving imidazole‐2‐carbaldehyde and tris(2‐aminoethyl)amine. Both the Co cation and the ligand were modified in the synthesis process, the cation via oxidation to CoIII, and the ligand via deprotonation to convert it into the 2‐(2‐{bis[2‐(1H‐imidazol‐2‐ylmethyleneamino)ethyl]amino}ethyliminomethyl)imidazolide anion (L). The ligand chelates the metal centre in a hexadentate fashion, forming a slightly distorted octahedral CoN6 chromophore. Packing is governed by N—H...N hydrogen bonds defining zigzag chains. A similar structure in the literature is discussed, and the wrong assignment of the oxidation state, given therein to the Co cation, is corrected.  相似文献   

10.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

11.
A series of zinc complexes, [ L X ZnEt] ( 1–5 ) and [ L X Zn 2 (OAc) 3 ] (6–9) , associated with NNO‐tridentate Schiff base ligands (2‐(((2‐((cyclohexyl[methyl]amino)methyl)phenyl)imino)methyl)phenolate (CAP) derivatives), were synthesized, and their activity toward ring‐opening polymerization (ROP) of L‐lactide (LA) and the reaction of CO2 with cyclohexene oxide were also investigated. All of [ L X ZnEt] revealed excellent catalytic activity to ring‐opening polymerization (ROP) of LA in the presence of benzyl alcohol. Among them, [ L H ZnEt] (1) showed the highest activity with 82% conversation within 45 s. In contrast, [L X Zn 2 (OAc) 3 ] (6–9) were inactive in ROP of L‐lactide. In addition, all of these Zn complexes demonstrated moderate activity in the reaction of CO2 with cyclohexene oxide in the presence of Bu4NCl.  相似文献   

12.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

13.
Ansa‐zirconocene diamide complex rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu) reacts with AlR3 (R = Me, Et, i‐Bu) and then with [CPh3]+[B(C6F5)4] (2) in toluene in order to in situ generate cationic alkylzirconium species. In the sequential NMR‐scale reactions of rac‐1 with various amount of AlMe3 and 2, rac‐1 transforms first to rac‐Me2Si(CMB)2Zr(Me)(NMe2) (rac‐3) and rac‐Me2Si(CMB)2ZrMe2 (rac‐4) by the reaction with AlMe3, and then to [rac‐Me2Si(CMB)2ZrMe]+ (5+) cation by the reaction of the resulting mixtures with 2. The activities of propylene polymerizations by rac‐1/Al(i‐Bu)3/2 system are dependent on the type and concentration of AlR3, resulting in the order of activity: rac‐1/Al(i‐Bu)3/2 > rac‐1/AlEt3/2 > rac‐1/MAO ≫ rac‐1/AlMe3/2 system. The bulkier isobutyl substituents make inactive catalytic species sterically unfavorable and give rise to more separated ion pairs so that the monomers can easily access to the active sites. The dependence of the maximum rate (Rp, max) on polymerization temperature (Tp) obtained by rac‐1/Al(i‐Bu)3/2 system follows Arrhenius relation, and the overall activation energy corresponds to 0.34 kcal/mol. The molecular weight (MW) of the resulting isotactic polypropylene (iPP) is not sensitive to Al(i‐Bu)3 concentration. The analysis of regiochemical errors of iPP shows that the chain transfer to Al(i‐Bu)3 is a minor chain termination. The 1,3‐addition of propylene monomer is the main source of regiochemical sequence and the [mr] sequence is negligible, as a result the meso pentad ([mmmm]) values of iPPs are very high ([mmmm] > 94%). These results can explain the fact that rac‐1/Al(i‐Bu)3/2 system keeps high activity over a wide range of [Al(i‐Bu)3]/[Zr] ratio between 32 and 3,260. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1071–1082, 1999  相似文献   

14.
Recently O‐carboxyanhydrides (OCAs) have emerged as a class of viable monomers which can undergo ring‐opening polymerization (ROP) to prepare poly(α‐hydroxyalkanoic acid) with functional groups that are typically difficult to achieve by ROP of lactones. Organocatalysts for the ROP of OCAs, such as dimethylaminopyridine (DMAP), may induce undesired epimerization of the α‐carbon atom in polyesters resulting in the loss of isotacticity. Herein, we report the use of (BDI‐IE)Zn(OCH(CH3)COOCH3) ((BDI)Zn‐1, (BDI‐IE)=2‐((2,6‐diethylphenyl)amino)‐4‐((2,6‐diisopropylphenyl)imino)‐2‐pentene), for the controlled ROP of various OCAs without epimerization. Both homopolymers and block copolymers with controlled molecular weights, narrow molecular weight distributions, and isotactic backbones can be readily synthesized. (BDI)Zn‐1 also enables controlled copolymerization of OCAs and lactide, facilitating the synthesis of block copolymers potentially useful for various biomedical applications. Preliminary mechanistic studies suggest that the monomer/dimer equilibrium of the zinc catalyst influences the ROP of OCAs, with the monomeric (BDI)Zn‐1 possessing superior catalytic activity for the initiation of ROP in comparison to the dimeric (BDI)Zn complex.  相似文献   

15.
A series of novel aluminum complexes containing bulky aryl‐βketiminato ligands [ArNCH C10H7C6H5O]Al(CH3)2 ( 3a , Ar = C6F5; 3b , Ar = C6H5; 3c , Ar = 2,6‐iPr2C6H3) have been synthesized in high yields. These complexes were identified by 1H and 13C NMR spectroscopy, elemental analysis, and Xray structural analysis. All the aluminum complexes could efficiently catalyze the ROP of ɛ‐caprolactone (ɛ‐CL) and Lactide (LA) in a controlled manner. It was found that the steric effect of the ligand has less effect on the ROP of CL, while the polymerization rate of L‐LA was suppressed significantly. More interestingly, this kind of catalysts can promote the random copolymerization of ɛ‐CL and L‐LA. The transesterification side reaction and the polymer composition could be adjusted by modulating the electronic and steric effects of the ligand. In paticular, compound 3c could produce quasi‐random copolymers without transesterification side reactions, as indicated by both the values of the reactivity ratios of the two monomers (rLA = 1.31; rCL = 0.99) and the similar average lengths of the caproyl and lactidyl sequences (LCL = 2.34; LLA = 2.44). Finally, a drug‐random copolymer conjugates could be easily prepared by using 3c , indicating a potential application of 3c in pharmacutical and biomedical field. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 203–212  相似文献   

16.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

17.
Zinc phenoxide complexes L1ZnOAr 1 – 4 (L1=Me2NC2H4NC(Me)CHC(Me)O) and L2ZnOAr 5 – 8 (L2=Me2NC3H6NC(Me)CHC(Me)O) with donor-functionalized β-ketoiminate ligands (L1/2) and OAr substituents (Ar=Ph 1 , 5 ; 2,6-Me2-C6H3 2 , 6 ; 3,5-Me2-C6H3 3 , 7 ; 4-Bu-C6H4 4 , 8 ) with tuneable electronic and steric properties were synthesized and characterized. 1 – 8 adopt binuclear structures in the solid state except for 5 , while they are monomeric in CDCl3 solution. 1 – 8 are active catalysts for the ring opening polymerization (ROP) of lactide (LA) in CH2Cl2 at ambient temperature and the catalytic activity is controlled by the electronic and steric properties of the OAr substituent, yielding polymers with high average molecular weight (Mn) and moderately controlled molecular weight distribution (MWDs). 1 and 5 showed a living polymerization character and kinetic studies on the ROP of L–LA with 1 and 5 proved first order dependencies on the monomer concentration. Homonuclear decoupled 1H-NMR analyses of polylactic acid (PLA) formed with rac-LA proved isotactic enrichment of the PLA microstructure.  相似文献   

18.
Four metal benzylalkoxides, [L2M2(μ‐OBn)2] (M = Mg or Zn), based on NNO‐tridentate ketiminate ligands are synthesized and characterized. X‐ray crystal structural studies of [(L1)2Mg2(μ‐OBn)2] ( 1a ) and [(L1)2Zn2(μ‐OBn)2] ( 1b ) (L1‐H = (Z)‐4‐((2‐(dimethylamino)ethylamino)(phenyl)methylene)‐3‐methyl‐1‐phenyl‐pyrazol‐5‐one) reveal that both complexes 1a and 1b are dinuclear species whereas the geometry around the metal center is penta‐coordinated bridging through the benzylalkoxy oxygen atoms in the solid structure. The activities and stereoselectivities of these four complexes toward the ring‐opening polymerization of L ‐lactide and rac‐lactide are investigated. Polymerization of L ‐lactide initiated by these four metal benzyloxides proceeds rapidly with good molecular weight control and yields polymer with a very narrow molecular weight distribution. The kinetic studies for the polymerization of L ‐lactide with compound 1a show first order in both compound 1a and lactide concentrations with the polymerization rate constant, k, of 6.94 M/min. Besides, experimental results demonstrate that among these metal benzylalkoxides, complex 1a exhibits the highest stereoselectivity with a Pr up to 87% and complex 1b possesses the highest activity indicating that the terminal group of NNO‐tridentate ketimine ligands exerts a significant influence on both the reactivity and stereoselectivity of these complexes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2318–2329, 2009  相似文献   

19.
New ω‐alkenyl‐substituted ansa‐bridged bisindenyl zirconium complexes are prepared and tested as self‐immobilized catalysts for ethene polymerization. But, even at very high concentration of the tethered complexes and low pressure of ethene, there is no evidence of their insertion into the polyethene chain. A “cross polymerization” test, performed by copolymerizing the tethered complexes with ethene using rac‐Me2Si(2‐MeBenzInd)2ZrCl2 ( MBI ), does not lead to their incorporation into the polyethene chain. However, the corresponding ligand proves to be a suitable comonomer for ethene, and, through copolymerization promoted by MBI, innovative poly(ethene‐co‐2,2′‐bis[(1H‐inden‐3′‐yl)‐hex‐5‐ene) copolymers are prepared and characterized by 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The molecule of 3,5‐bis{4‐[(benzimidazol‐1‐yl)methyl]phenyl}‐4H‐1,2,4‐triazol‐4‐amine (L), C30H24N8, has an antiperiplanar conformation of the two terminal benzimidazole groups and forms two‐dimensional networks along the crystallographic b axis via two types of intermolecular hydrogen bonds. However, in catena‐poly[[[dichloridomercury(II)]‐μ‐3,5‐bis{4‐[(benzimidazol‐1‐yl)methyl]phenyl}‐4H‐1,2,4‐triazol‐4‐amine] dichloromethane hemisolvate], {[HgCl2(C30H24N8)]·0.5CH2Cl2}n, synthesized by the combination of L with HgCl2, the L ligand adopts a synperiplanar conformation. The HgII cation lies in a distorted tetrahedral environment, which is defined by two N atoms and two Cl atoms to form a one‐dimensional zigzag chain. These zigzag chains stack via hydrogen bonds which expand the dimensionality of the structure from one to two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号