首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ion-molecule reactions between the O=P(OCH(3))(2) (+) phosphonium ions and five aliphatic esters (methyl acetate, methyl propionate, methyl 2-methylpropionate, methyl butyrate and ethyl acetate) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2) (+) phosphonium ions, formed by electron ionization from neutral trimethyl phosphite, were found to react with aliphatic esters to give an adduct ion [RR'CHCOOR", O=P(OCH(3))(2)](+), which loses spontaneously a molecule of ketene CH(2)=CO or substituted ketenes RR'C=CO. Isotope-labeled methyl acetate was used to elucidate fragmentation mechanisms. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2) (+) and methyl acetate is described.  相似文献   

2.
Ion/molecule reactions between O=P(OCH(3))(2)(+) phosphonium ions and six aromatic hydrocarbons (benzene, toluene, 1,2,4-trimethylbenzene, naphthalene, acenaphthylene and fluorene) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2)(+) phosphonium ions, formed by electron impact from neutral trimethyl phosphite, were found to react with aromatic hydrocarbons (ArHs) to give (i) an adduct [ArH, O=P(OCH(3))(2)](+) and (ii) for ArHs which have an ionization energy below or equal to 8.14 eV, a radical cation ArH(+ *) by charge transfer reaction. Collision-induced dissociation experiments, which produce fragment ions other than the O=P(OCH(3))(2)(+) ions, indicate that the adduct ions are covalent species. Isotope-labeled ArHs were used to elucidate fragmentation mechanisms. The charge transfer reactions were investigated using density functional theory at the B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G(d,p) level of theory. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2)(+) and benzene is described.  相似文献   

3.
The hydrosilylation of α,β-unsaturated nitriles and esters such as acrylonitrile, crotononitrile, cinnamonitrile, ethyl and methyl acrylate, ethyl and methyl crotonate and ethyl and methyl methacrylate using tris(triphenylphosphine)chlororhodium as a catalyst is described. The hydrosilylation of α,β-unsaturated nitriles provided α-adduct exclusively in high yield except in the case of trichlorosilane which afforded β-adduct with acrylonitrile. On the other hand, the hydrosilylation of α,β-unsaturated esters gave rather complex results. The selectivity of the reactions was dramatically affected by the substituent of the ester group and that on the β-carbon. Thus, the hydrosilylation of ethyl acrylate with triethylsilane afforded a β-adduct, but, that of ethyl crotonate using the same hydrosilane gave a 1,4-adduct exclusively. Possible mechanisms for these reactions are discussed.  相似文献   

4.
The ground and first triplet excited-state potential energy surfaces of the [2 + 2]-cycloadditions of 2-cyclohexenone, methyl acrylate, and methyl crotonate to ethylene have been studied by means of CASSCF and DFT-B3LYP calculations. The attack of ethylene to the (3)(pi-pi) alpha,beta-unsaturated carbonyl compound leads to the formation of a triplet 1,4-biradical intermediate that evolves to the ground-state potential energy surface. The outcome of the reaction is governed by the competition between the deactivation of the (3)(pi-pi) alpha,beta-unsaturated carbonyl compound itself and its reaction with ethylene to form the triplet 1,4-biradical. For 2-cyclohexenone, the potential energy barrier corresponding to the formation of the biradical intermediate is lower than for the acyclic systems. On the other hand, the energy necessary to reach the crossing point between the (3)(pi-pi) and the ground-state potential energy surfaces is lower for the acyclic systems than for 2-cyclohexenone. For methyl acrylate and methyl crotonate, the decay of the (3)(pi-pi) state of the isolated molecule is therefore expected to be faster than the formation of the 1,4-biradical, so that the [2 + 2]-cycloaddition will not take place. However, for 2-cyclohexenone the formation of the triplet 1,4-biradical is favorable, and the process will lead to the formation of the corresponding cyclobutane derivative.  相似文献   

5.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with methyl crotonate and ethyl crotonate have been determined at 298 K and atmospheric pressure. The decay of the organics was monitored using gas chromatography with flame ionization detection (GC-FID), and the rate constants were determined using the relative rate method with different reference compounds. Room temperature rate coeficcients were found to be (in cm(3) molecule(-1) s(-1)): k(1)(OH + CH(3)CH═CHC(O)OCH(3)) = (4.65 ± 0.65) × 10(-11), k(2)(Cl + CH(3)CH═CHC(O)OCH(3)) = (2.20 ± 0.55) × 10(-10), k(3)(OH + CH(3)CH═CHC(O)OCH(2)CH(3)) = (4.96 ± 0.61) × 10(-11), and k(4)(Cl + CH(3)CH═CHC(O)OCH(2)CH(3)) = (2.52 ± 0.62) × 10(-10) with uncertainties representing ±2σ. This is the first determination of k(1), k(3), and k(4) under atmospheric pressure. The rate coefficients are compared with previous determinations for other unsaturated and oxygenated VOCs and reactivity trends are presented. In addition, a comparison between the experimentally determined k(OH) with k(OH) predicted from k vs E(HOMO) relationships is presented. On the other hand, product identification under atmospheric conditions has been performed for the first time for these unsaturated esters by the GC-MS technique in NO(x)-free conditions. 2-Hydroxypropanal, acetaldehyde, formaldehyde, and formic acid were positively observed as degradation products in agreement with the addition of OH to C2 and C3 of the double bond, followed by decomposition of the 2,3- or 3,2-hydroxyalkoxy radicals formed. Atmospheric lifetimes, based on of the homogeneous sinks of the unsaturated esters studied, are estimated from the kinetic data obtained in the present work.  相似文献   

6.
A modular and concise total synthesis of (+/-)-daurichromenic acid has been accomplished in four steps from ethyl acetoacetate, ethyl crotonate, and trans,trans-farnesal. A series of analogues of this natural product, which has potent anti-HIV activity, were also prepared from ethyl or methyl acetoacetate and a series of readily available alpha,beta-unsaturated esters and aldehydes.  相似文献   

7.
Arylboronic acids underwent the conjugate 1,4-addition to alpha, beta-unsaturated esters to give beta-aryl esters in high yields in the presence of a rhodium(I) catalyst. The addition of arylboronic acids to isopropyl crotonate resulted in high yields and high enantioselectivity exceeding 90% ee in the presence of 3 mol % of Rh(acac)(C(2)H(4))(2) and (S)-binap at 100 degrees C. The rhodium/(S)-binap complex provided (R)-3-phenylbutanoate in the addition of phenylboronic acid to benzyl crotonate. The effects on the enantioselectivity of chiral phosphine ligands, rhodium precursors, and substituents on alpha,beta-unsaturated esters are discussed, as well as the mechanistic aspect of the catalytic cycle.  相似文献   

8.
Coupling reactions of allenylphosphonates (OCH(2)CMe(2)CH(2)O)P(O)CH=C=CRR' [R, R' = H (1a), R = H, R' = Me (1b), R = R' = Me (1c)] with aryl iodides, iodophenol, and iodobenzoic acid in the presence of palladium(II) acetate are investigated and compared with those of phenylallenes PhCH=C=CR2 [R = H (2a), Me (2b)] and allenyl esters EtO(2)CCH=C=CR(2) [R = H (2c), Me (2d)]. While 1b and 1c couple with different stereochemical outcomes using PhI in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give phenyl-substituted 1,3-butadienes, 1a does not undergo coupling but isomerizes to the acetylene (OCH(2)CMe(2)CH(2)O)P(O)CCMe (7). In the reaction of 1c with PhI, use of K(2)CO(3) affords the butadiene (Z)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Ph)-C(Me)=CH(2) (12); in contrast, the use of Ag(2)CO(3) leads to the allene (OCH(2)CMe(2)CH(2)O)P(O)C(Ph)=C=CMe(2) (20), showing that these bases differ very significantly in their roles. The reaction of 1a with PhI or PhB(OH)2 in (t)he presence of Pd(OAc)2/CsF/DMF leads mainly to (E)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Me)Ph (21) and (OCH(2)CMe(2)CH(2)O)P(O)CH2-C(Ph)=CH(2) (22) and is thus a net 1,2-addition of Ph-H. Compound 1b reacts with iodophenol in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give a benzofuran that has a structure different from that obtained by using 1c under similar conditions. Treatment of 1a with iodophenol/Pd(OAc)(2)/CsF/DMF also gives a benzofuran whose structure is different from that obtained by using 2a under similar conditions. In the reaction with 2-iodobenzoic acid, 1a and 2c afford one type of isocoumarin, while 1b,c and 2a,b give a second type of isocoumarin. The structures of key compounds are established by X-ray crystallography. Utility of the phosphonate products in the Horner-Wadsworth-Emmons reaction is demonstrated.  相似文献   

9.
A general and versatile method for the divergent and diastereoselective synthesis of polyhydroxylated indolizidines has been established. The annulation reactions of a readily available enantiopure dihydroxylated cyclic secondary enamine with alpha,beta-unsaturated carboxylates including methyl acrylate, methyl crotonate, methyl 2-hexenoate, allenoate, and dimethyl acetylenedicarboxylate and with malonyl chloride produced hexahydro- or tetrahydro-5-indolizinone-8-carboxylates in high yields. The resulting 5-indolizinone derivatives were converted into diverse polyhydroxylated indolizidines in good yields through practical hydrogenation and reduction reactions.  相似文献   

10.
Reaction of phosphine oxides R(3)P═O [R = Me (1a), Et (1c), (i)Pr (1d) and Ph (1e)], with the bromophosphoranimines BrPR'R'P═NSiMe(3) [R' = R' = Me (2a); R' = Me, R' = Ph (2b); R' = R' = OCH(2)CF(3) (2c)] in the presence or absence of AgOTf (OTf = CF(3)SO(3)) resulted in a rearrangement reaction to give the salts [R(3)P═N═PR'R'O-SiMe(3)]X (X = Br or OTf) ([4]X). Reaction of phosphine oxide 1a with the phosphoranimine BrPMe(2)═NSiPh(3) (5) with a sterically encumbered silyl group also resulted in the analogous rearranged product [Me(3)P═N═PMe(2)O-SiPh(3)]X ([8]X) but at a significantly slower rate. In contrast, the direct reaction of the bulky tert-butyl substituted phosphine oxide, (t)Bu(3)P═O (1b) with 2a or 2c in the presence of AgOTf yielded the phosphine oxide-stabilized phosphoranimine cations [(t)Bu(3)P═O·PR'(2)═NSiMe(3)](+) ([3](+), R' = Me (d), OCH(2)CF(3) (e)). A mechanism is proposed for the unexpected formation of [4](+) in which the formation of the donor-stabilized adduct [3](+) occurs as the first step.  相似文献   

11.
The atmospheric chemistry of two C(4)H(8)O(2) isomers (methyl propionate and ethyl acetate) was investigated. With relative rate techniques in 980 mbar of air at 293 K the following rate constants were determined: k(C(2)H(5)C(O)OCH(3) + Cl) = (1.57 ± 0.23) × 10(-11), k(C(2)H(5)C(O)OCH(3) + OH) = (9.25 ± 1.27) × 10(-13), k(CH(3)C(O)OC(2)H(5) + Cl) = (1.76 ± 0.22) × 10(-11), and k(CH(3)C(O)OC(2)H(5) + OH) = (1.54 ± 0.22) × 10(-12) cm(3) molecule(-1) s(-1). The chlorine atom initiated oxidation of methyl propionate in 930 mbar of N(2)/O(2) diluent (with, and without, NO(x)) gave methyl pyruvate, propionic acid, acetaldehyde, formic acid, and formaldehyde as products. In experiments conducted in N(2) diluent the formation of CH(3)CHClC(O)OCH(3) and CH(3)CCl(2)C(O)OCH(3) was observed. From the observed product yields we conclude that the branching ratios for reaction of chlorine atoms with the CH(3)-, -CH(2)-, and -OCH(3) groups are <49 ± 9%, 42 ± 7%, and >9 ± 2%, respectively. The chlorine atom initiated oxidation of ethyl acetate in N(2)/O(2) diluent gave acetic acid, acetic acid anhydride, acetic formic anhydride, formaldehyde, and, in the presence of NO(x), PAN. From the yield of these products we conclude that at least 41 ± 6% of the reaction of chlorine atoms with ethyl acetate occurs at the -CH(2)- group. The rate constants and branching ratios for reactions of OH radicals with methyl propionate and ethyl acetate were investigated theoretically using transition state theory. The stationary points along the oxidation pathways were optimized at the CCSD(T)/cc-pVTZ//BHandHLYP/aug-cc-pVTZ level of theory. The reaction of OH radicals with ethyl acetate was computed to occur essentially exclusively (~99%) at the -CH(2)- group. In contrast, both methyl groups and the -CH(2)- group contribute appreciably in the reaction of OH with methyl propionate. Decomposition via the α-ester rearrangement (to give C(2)H(5)C(O)OH and a HCO radical) and reaction with O(2) (to give CH(3)CH(2)C(O)OC(O)H) are competing atmospheric fates of the alkoxy radical CH(3)CH(2)C(O)OCH(2)O. Chemical activation of CH(3)CH(2)C(O)OCH(2)O radicals formed in the reaction of the corresponding peroxy radical with NO favors the α-ester rearrangement.  相似文献   

12.
Ultraviolet photolysis of stoichiometric amounts of methyl oleate and Fe(CO)(5) in hexanes solvent at 0 degrees C gives Fe(CO)(3)(eta(4)-alpha,beta-ester) in which the alpha,beta-unsaturated ester isomer of methyl oleate is stabilized by eta(4)-oxadiene pi coordination of the olefin and ester carbonyl groups to the Fe(CO)(3) unit. Treatment of the Fe(CO)(3)(eta(4)-alpha,beta-ester) with pyridine or CO liberates the free alpha,beta-ester, methyl octadec-trans-2-enoate, in 70% yield. The Fe(CO)(3) unit both catalyzes the olefin isomerization and stabilizes the alpha,beta-unsaturated ester, which results in the formation of the alpha,beta-ester in a yield far above that (3.5%) observed for simple catalyzed methyl oleate isomerization. The much smaller olefin esters, methyl 3-butenoate and ethyl 4-methyl-4-pentenoate, are isomerized under the same conditions to their alpha,beta-unsaturated esters in 94 and 90% yields, respectively. The effects of reaction conditions on the yield, the use of Fe(CO)(3)(cis-cyclooctene)(2) as a nonphotolytic catalyst, and the mechanism of this useful synthetic process are discussed.  相似文献   

13.
Hydrolysis products of organotin compounds RC(6)H(4)OCH(2)COOSn(CH(2)ph)(3) (R = o-NO(2), 1; m-NO(2), 2; p-NO(2), 3; o-CH(3), 4; o-OCH(3), 5; o-Cl, 6; o-Br, 7) and RC(6)H(3)OCH(2)COOSn(CH(2)ph)(3) (R = o,o-2CH(3), 8, o-OCH(3), p-CHO, 9; o,p-2Cl, 10), produced in aqueous acetonitrile solution, have been investigated by electrospray mass spectrometry (MS) and MS(n) techniques. The complexes [Y(2)SnXR'](-), [Y(3)SnXR'](-), [Y(3)SnX(2)R'](-), [Y(2)SnX(3)R'](-), and fragment ions of [Y(3)SnR'](-), plus abundant RC(6)H(4)(or RC(6)H(3))OCH(2)COO(-) and RC(6)H(4)(or RC(6)H(3))O(-) ions are observed in negative mode, whereas the protonated molecular ion [M + H](+), complexes [Y(2)SnXR'](+), [Y(3)SnXR'](+), [Y(2)SnX(2)R'](+), [Y(3)SnX(2)R'](+), [Y(2)SnX(3)R'](+), [Y(3)SnX(3)R'](+), as well as [YSnXR'](+), [M - CH(2)ph](+), XSn(+), (phCH(2))(3)Sn(+), phCH(2)Sn(+) (Y = &bond;CH(2)ph, X = &bond;OOCCH(2)OC(6)H(4)R(or C(6)H(3)R)) are detected in the positive mode. Water adduct ions are seen in both modes. The assignments are facilitated by agreement between observed and calculated isotopic patterns and tandem mass spectrometry studies.  相似文献   

14.
[reaction: see text] Enantiomerically pure 2,2,3,4,5-pentasubstituted pyrrolidines can be prepared, in high overall yield, from alpha,beta-unsaturated esters. Asymmetry is introduced via a Michael addition, and additional stereogenic centers are introduced by an aldol reaction. A novel stereospecific ring-forming reaction, proceeding via a thiiranium (episulfonium) ion, yields pyrrolidines from beta-hydroxy sulfides. In this manner, 2,2,3,4,5-pentasubstituted pyrrolidines, containing three contiguous stereogenic centers around the ring, can be prepared in 44% overall yield from ethyl crotonate.  相似文献   

15.
Densities of the binary systems of ethylbenzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene have been measured as a function of the composition, at 298.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densitometer. The calculated excess volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. The excess volumes are positive for the systems ethylbenzene + (methyl methacrylate, ethyl acrylate) and negative for the systems ethylbenzene + (butyl acrylate, styrene).  相似文献   

16.
Phosphonium ions CH(3)P(O)OCH(3)(+) (93 Th) and CH(3)OP(O)OCH(3)(+) (109 Th) react with 1,4-dioxane to form unique cyclic ketalization products, 1,3,2-dioxaphospholanium ions. By contrast, a variety of other types of ions having multiple bonds, including the acylium ions CH(3)CO(+) (43 Th), CH(3)OCO(+) (59 Th), (CH(3))(2)NCO(+) (72 Th), and PhCO(+) (105 Th), the iminium ion H(2)C[double bond]NHC(2)H(5)(+) (58 Th) and the carbosulfonium ion H(2)C[double bond]SC(2)H(5)(+) (75 Th) do not react with 1,4-dioxane under the same conditions. The characteristic ketalization reaction can also be observed when CH(3)P(OH)(OCH(3))(2)(+), viz. protonated dimethyl methylphosphonate (DMMP), collides with 1,4-dioxane, as a result of fragmentation to yield the reactive phosphonium ion CH(3)P(O)OCH(3)(+) (93 Th). This novel ion/molecule reaction is highly selective to phosphonium ions and can be applied to identify DMMP selectively in the presence of ketone, ester, and amide compounds using a neutral gain MS/MS scan. This method of DMMP analysis can be applied to aqueous solutions using electrospray ionization; it shows a detection limit in the low ppb range and a linear response over the range 10 to 500 ppb.  相似文献   

17.
A large series of new N-phosphorylphosphoranimines that bear potentially reactive functional groups on both phosphorus centers were prepared by silicon-nitrogen bond cleavage reactions of N-silylphosphoranimines. Thus, treatment of the N-silylphosphoranimines, Me(3)SiN=P(Me)(R)X (R = Me, Ph; X = OCH(2)CF(3) and R = Me, X = OPh), with phosphoryl chlorides, RP(=O)Cl(2) (R' = Cl, Me, Ph), readily afforded the corresponding N-phosphoryl derivatives, R'P(=O)(Cl)-N=P(Me)(R)X, in high yields. Subsequent reaction with 1 or 2 equiv of the silylamine, Me(3)SiNMe(2), resulted in ligand exchange at the phosphoryl (P=O) group to give the P-dimethylamino analogues, R'P(=O)(NMe(2))N=P(Me)(R)X (R' = Cl, NMe(2), Me, Ph; R = Me, Ph; X = OCH(2)CF(3), OPh). These new N-phosphorylphosphoranimines (and one thiophosphoryl analogue) were obtained as thermally stable, distillable liquids and were characterized by NMR ((1)H, (13)C, and (31)P) spectroscopy and elemental analysis. One member of the series, Cl(2)P(=O)N=P(Me)(Ph)OCH(2)CF(3) (4), was also studied by single-crystal X-ray diffraction which revealed that the formal P(O)-N single bond [1.55(1) A] is shorter than the formal N=PR(2)X double bond [1.60(1) A]. Such structural features are compared to those of similar compounds and discussed in relationship to the unexpected thermolysis pathways observed for these N-phosphorylphosphoranimines, none of which produced poly(phosphazenes).  相似文献   

18.
Densities of the binary systems of toluene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene have been measured as a function of the composition, at 25°C and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densitometer. The calculated excess volumes were correlated with the Redlich–Kister equation and with a series of Legendre polynomials. The excess volumes are negative for systems toluene + (ethyl acrylate, butyl acrylate, and styrene) and positive for the system toluene + methyl methacrylate.  相似文献   

19.
The use of α-(substituted-phenyl)-4-morpholineacetonitriles in 1,4-additions to ethyl acrylate, ethyl crotonate, methyl α-methylacrylate, acrylonitrile, methylacrylonitrile, crotononitrile and cinnamonitrile was studied. A convenient route to 6-aryl-4,5-dihydro-3(2H) pyridazinones from aryl aldehydes and heterocyclic aldehydes was developed.  相似文献   

20.
The influence of the hydroxyl group in 1-dodeconal and phenol on the carbonyl vibration of representative compounds belonging to methyl methacrylate, ethyl methacrylate and butyl methacrylate in carbon tetrachloride has been studied by Fourier transform infrared spectroscopic method. The integrated intensities and change in dipole moments for O–H and C=O bonds were calculated. The formation constants of the 1 : 1 complexes have been calculated using Nash's method. The values of the formation constant and Gibbs energy vary with the ester chain length, which suggests that the strengths of the intermolecular hydrogen bonds (O–H ··· O=C) are dependent on the alkyl group of the acrylic ester and the results show that the proton accepting ability of acrylic esters is in the order methyl methacrylate < ethyl methacrylate < butyl methacrylate. The strength of the intermolecular C=O: HO bonds is also shown to be dependent on the basicity of the C=O group of acrylic esters and the acidity of the proton donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号