首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper aims to present a unified vibration analysis approach for the four-parameter functionally graded moderately thick doubly-curved shells and panels of revolution with general boundary conditions. The first-order shear deformation theory is used in this formulation. The functionally graded panels structures consists of ceramic and metal which are set to vary continuously in the thickness direction according to the general four-parameter power-law distribution, and six types of power-law distributions are considered for the ceramic volume fraction. The admissible function of the FG panels and shells of revolution is obtained by the improved Fourier series with the help of the governing equations and the boundary conditions. The solution is obtained by using the variational operation in terms of the unknown expanded coefficients. By a great many numerical examples, the rapid convergence and good reliability and accuracy of the proposed approach are validated. A variety of new results for vibration problems of the FG doubly-curved shells and panels with different elastic restraints, geometric and material parameters are presented. The effects of the elastic restraint parameters, power-law exponent, circumference angle and power-law distributions on the free vibration characteristic of the panels are also presented, which can be served as benchmark data in the research and the actual production process.  相似文献   

2.
The problem of equal-stress reinforcement of three-layered momentless shells with fibers of constant cross section under thermoelastic and thermoplastic deformation of phase materials is formulated. A qualitative analysis of systems of resolving equations is carried out. Analytical solutions to the axisymmetric problems of equal-stress reinforcement of shells of revolution under elastic and inelastic deformation are constructed. It is shown that the problem can have several alternative solutions, which can be additionally controlled by varying the reinforcement intensities on the shell contour.  相似文献   

3.
A frequency method is proposed for solving the problem of the vibrations of shells of revolution taking into account the energy dissipation under arbitrary force loading and on collision with a rigid obstacle. The Laplace transform is taken of the equation of the vibrations of a shell of revolution with non-zero initial conditions. For the inhomogeneous differential equation obtained, a variational method is used to solve the boundary-value problem, which consists of finding the Laplace-transformed boundary transverse and longitudinal forces and bending moments as functions of the boundary displacements. The equations of equilibrium of nodes, i.e. the corresponding equations of the finite-element method, are then compared, using results obtained earlier [1–4]. Amplitude-phase-frequency characteristics (APFCs) for the shell cross-sections selected are plotted. An inverse Laplace transformation is carried out using the clear relationship between the extreme points of the APFCs and the coefficients of the corresponding terms of the series in an expansion vibration modes [3]. In view of the fact that the proposed approach is approximate, numerical testing is used.  相似文献   

4.
应用轴对称旋转扁壳的非线性大挠度动力学方程,研究了波纹扁壳在均布载荷作用下的非线性受迫振动问题.采用格林函数方法,将扁壳的非线性偏微分方程组化为非线性积分微分方程组.再使用展开法求出格林函数,即将格林函数展开为特征函数的级数形式,积分微分方程就成为具有退化核的形式,从而容易得到关于时间的非线性常微分方程组.针对单模态振形,得到了谐和激励作用下的幅频响应.作为算例,研究了正弦波纹扁球壳的非线性受迫振动现象.该文的解答可供波纹壳的设计参考.  相似文献   

5.
Based on the Kirchhoff-Love hypotheses and adequate supplementary hypotheses for the distribution of electric field quantities, a model for parametric vibrations of composite shells of revolution made of a passive (without a piezoeffect) middle layer and two active (with a piezoeffect) surface layers under the action of harmonic mechanical and electric loads is developed. The dissipative material properties are taken into account by linear viscoelastic models. Since the vibrations on the boundary of the main domain of dynamic instability (MDDI) are harmonic, the investigation of this domain, in a first approximation, is reduced to generalized eigenvalue problems, which are solved by the finite-element method. The problem on parametric vibrations of a three-layer conical shell under harmonic mechanical loading is considered. The influence of the shell thickness, dissipation, and electric boundary conditions on the MDDI is investigated. Two limiting cases of electric boundary conditions are considered, where the electrodes are short-circuited or not. The curves presented show a considerable influence of the electric boundary conditions on the characteristics of the MDDI, namely on its width and position on the frequency axis and on the critical parameter of excitation.  相似文献   

6.
This paper aims to investigate the free vibrational analysis of the generally doubly-curved shells of revolution made of functionally graded (FG) materials and constrained with different boundary conditions by means of an efficient, convenient and explicit method based on the Haar wavelet discretization approach. The FG materials of the shell consist of a combination of ceramic and metal, which four parameter power-law distribution functions have chosen for modeling of the smoothly and gradually variation of the material properties in the thickness direction. The theoretical model of the shell is formulated by employing of the first-order shear deformation theory. The rotation and displacement components of each point of the shell are expanded in the form of product of the Haar wavelet series in meridional direction as well as trigonometric series in the circumferential direction. By adding the boundary condition equations to the main system of equations, the constants appeared from the integrating of the Haar wavelet series are satisfied. In addition, with solving the characteristic equation, the vibrational results including the natural frequencies and the corresponding mode shapes are achieved. Then, the present results have been compared with those available in the literature. The results indicate that this method has high accuracy, high reliability and also a higher convergence rate in attaining the frequencies of the FG doubly-curved shells of revolution. Also, the effects of the main parameters such as power-law exponent, geometrical parameters, material distribution profiles and different types of boundary conditions, on the vibrational behavior of the FG doubly-curved shells of revolution, are investigated. Finally, taking into account the effects of geometrical parameters and material distribution profiles, for FG doubly-curved shells of revolution with different boundary conditions such as classic, elastic restraints and their combination, a variety of new frequency studies are provided which can be considered as proof results for further researches in this field.  相似文献   

7.
The methods for determining the nonaxisymmetric thermoelastoplastic stress-strain state of layered orthotropic shells of revolution are developed. It is assumed that the layered package deforms without mutual slippage or separation of layers. The problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. In the isotropic layers, plastic deformations may appear, whereas the orthotropic layers deform in the elastic region. It is assumed that the mechanical properties of the materials are temperature-dependent. The thermoplasticity equations are presented in a form corresponding to the method of additional deformations. The order of the system of partial differential equations obtained is reduced with the help of trigonometric series in the circumferential coordinate. The resulting systems of ordinary differential equations are solved by the Godunov technique of discrete orthogonalization. The nonaxisymmetric thermoelastoplastic stress-strain states of layered shells of revolution are considered as examples.  相似文献   

8.
The paper is concerned with determination of the lower part of the spectrum of shells of revolution of entirely or partially negative Gaussian curvature. A classification of the integrals of the system of equations is obtained in terms of the geometry of the middle surface and boundary conditions. Special attention has been paid to the problem of turning point, at which the curvature changes its sign.  相似文献   

9.
波纹壳的格林函数方法   总被引:6,自引:1,他引:5  
应用轴对称旋转扁壳的基本方程,研究了在任意载荷作用下具有型面锥度的浅波纹壳的非线性弯曲问题· 采用格林函数方法,将扁壳的非线性微分方程组化为非线性积分方程组· 再使用展开法求出格林函数,即将格林函数展成特征函数的级数形式,积分方程就成为具有退化核的形式,从而容易得到非线性代数方程组· 应用牛顿法求解非线性代数方程组时,为了保证迭代的收敛性,选取位移作为控制参数,逐步增加位移,求得相应的载荷· 在算例中,研究了具有球面度的浅波纹壳的弹性特征· 结果表明,由于型面锥度的引入,特征曲线发生显著变化,随着荷载的增加,将出现类似扁球壳的总体失稳现象· 本文的解答符合实验结果·  相似文献   

10.
An approach is proposed to solving linear boundary-value problems for shells of revolution that are closed in the circumferential direction, with complex boundary conditions in which the coefficients of the solving functions depend on the circumferential coordinate. The approach relies on reduction of the boundary-value problem to a number of boundary-value problems for systems of ordinary differential equations and systems of algebraic equations. We solve a specific problem for the stressed state of a conical shell with one of its ends supported by an elastic foundation with a variable modulus.Institute of Mechanics, Ukrainian Academy of Sciences. Translated from Vychislitel'naya i Prikladnaya Matematika, No. 68, pp. 85–93, 1989.  相似文献   

11.
A method for constructing defining relations of the linear theory of shells of revolution in complex Hamiltonian form has been proposed. Based on the Lagrange variational principle, we have constructed a mathematical model of a multilayer orthotropic shell of revolution. We have obtained explicit expressions for the coefficients and right-hand sides of the Hamiltonian complex system of equations describing the statics of shells of revolution in terms of their rigid characteristics and acting loads. The Hamiltonian resolving system of linear differential equations, formulated in the axially symmetric case, has some specific properties facilitating both analytical studies and numerical procedures of their solution.  相似文献   

12.
A unified numerical analysis model is presented to solve the free vibration of composite laminated doubly-curved shells and panels of revolution with general elastic restraints by using the Fourier–Ritz method. The first-order shear deformation theory is adopted to conduct the analysis. The admissible function is acquired by using a modified Fourier series approach in which several auxiliary functions are added to a standard cosine Fourier series to eliminate all potential discontinuities of the displacement function and its derivatives at the edges. Furthermore, the general elastic restraint and kinematic compatibility and physical compatibility conditions are imitated by the boundary and coupling spring technique respectively when the composite laminated doubly-curved panels degenerate to the complete shells of revolution. Then, the desired results are solved by the variational operation. Large quantities of numerical examples are calculated about the free vibration of cross-ply and angle-ply composite laminated doubly-curved panels and shells with different geometric and material parameters. Through the sufficient conclusions obtained from the comparison, it can be seen that highly accurate solutions can be yielded with a little computational effort. To understand the influence of different boundary conditions, lamination schemes, material and geometrical parameters on the vibration characteristics, a series of parametric studies are carried out. Lastly, results for vibration of the composite laminated doubly-curved panels and shells subject to various kinds of boundary conditions and with different geometrical and material parameters are also presented firstly, which can provide the benchmark data for other studies conducted in the future.  相似文献   

13.
J. Hohe  L. Librescu 《PAMM》2003,2(1):158-159
The present study is concerned with an advanced theory of sandwich shells with transversely compressible core. The model is based on the standard Kirchhoff‐Love hypothesis for the face sheets and a third‐order displacement expansion for the core. Consistent equations of motion and boundary conditions are derived by means of Hamilton's variational principle. The model is applied to a postbuckling analysis of cylindrical shells under axial compression.  相似文献   

14.
91. IntroductionIn this paper, or,g,a,r,' take their values in the set {1, 2}, i, i, k, l,' take their valuesin the set {1, 2, 3}.In [1] and 12] under certain conditions, starting from the three-dimensional dynamicequations Of elastic shells we have given the justifications of dynamic equations of membraneshells and fie-cural shells respectively. In this paper, we shall show that, starting from thedynamic equations of KOiter shells, we can alsO get the dylltalc equstions of membraneshell…  相似文献   

15.
A problem of the dynamic process of their deformation is formulated in the momentless approximation for thin shells made of rubber-like elastomers under the action of a time-varying excess hydrostatic pressure. A system of non-linear equations of motion is set up for the case of arbitrary displacements and deformations in which the true deformation of the transverse compression of the shell, corresponding to the use of the modified Kirchhoff–Love model proposed earlier, and the coordinates of the points of the middle surface with respect to a fixed Cartesian system of coordinates, are taken as the required unknown functions. Physical relations connecting the components of the true internal stresses with the elongation factors and the extent of the shear strain are constructed using relations proposed earlier by Chernykh. A finite-difference method is developed for solving the initial-boundary value problem and, on the basis of this, the dynamic process of the inflation of shells of revolution at different rates of pressure increase is investigated and the unstable stages of their deformation are established with a determination of the corresponding limiting (critical) pressure value. After this value has been reached, a further increase in the deformations occurs at decreasing values of the internal pressure.  相似文献   

16.
Nonlinear vibration analysis of circular cylindrical shells has received considerable attention from researchers for many decades. Analytical approaches developed to solve such problem, even not involved simplifying assumptions, are still far from sufficiency, and an efficient numerical scheme capable of solving the problem is worthy of development. The present article aims at devising a novel numerical solution strategy to describe the nonlinear free and forced vibrations of cylindrical shells. For this purpose, the energy functional of the structure is derived based on the first-order shear deformation theory and the von–Kármán geometric nonlinearity. The governing equations are discretized employing the generalized differential quadrature (GDQ) method and periodic differential operators along axial and circumferential directions, respectively. Then, based on Hamilton's principle and by the use of variational differential quadrature (VDQ) method, the discretized nonlinear governing equations are obtained. Finally, a time periodic discretization is performed and the frequency response of the cylindrical shell with different boundary conditions is determined by applying the pseudo-arc length continuation method. After revealing the efficiency and accuracy of the proposed numerical approach, comprehensive results are presented to study the influences of the model parameters such as thickness-to-radius, length-to-radius ratios and boundary conditions on the nonlinear vibration behavior of the cylindrical shells. The results indicate that variation of fundamental vibrational mode shape significantly affects frequency response curves of cylindrical shells.  相似文献   

17.
For the sandwich plates and shells with transversally-soft core and carrier layers having on the outer contour of the reinforcing rod, for small deformations, and middle displacements we construct refined geometrically nonlinear theory. This theory allows to describe the process of the subcritical deformation and identify all possible buckling of carrier layers and reinforcing rods. It is based on the introduction as unknown contact forces at the points of interaction mating surface of the outer layers with core and carrier layers and a core with reinforcing rods at all points of the surface of their conjugation to the shell contour. To derive the basic equations of equilibrium, static boundary conditions for the shell and reinforcing rods, as well as conditions of the kinematic coupling of the carrier layers with a core, the carrier layers and a core with reinforcing rods we use previously proposed generalized Lagrange variational principle.  相似文献   

18.
Based on the hypothesis of similarity of transverse displacements in thin-walled sandwich shells with a transversely soft core under dynamic and static loads, refined geometrically nonlinear dynamic equations of motion are constructed in the case of large variations in the parameters of the stress-strain state (SSS) in the tangential directions. For shells structurally symmetric across the thickness and loaded with initial static loads, linearized dynamic equations are derived, which, upon introducing the synphasic and antiphasic functions of displacements and forces, can be used to describe the synphasic and antiphasic buckling forms in the transverse and tangential directions. For nonshallow cylindrical and shallow spherical shells, the nonclassical problems on all possible vibration forms realized at zero indices of variability of the SSS parameters in the tangential directions are formulated and solved. For shallow shells of symmetric structure, the resolving equations are obtained by introducing, instead of tangential displacements and transverse tangential stresses in the core, the corresponding potential and vortex functions.  相似文献   

19.
Algorithms for solving boundary-value problems and for computing temperature fields and thermal stresses are considered for a certain class of structures whose main element is a thin-walled shell of revolution subject to external pressure under general conditions of unsteady heat exchange with the environment. Within the framework of Meissner's computational scheme [1], a system of differential equations is obtained for the axisymmetric bending of arbitrary shells of revolution, using a linear coordinate along an arc of the meridian. For the joint and simultaneous solution of these equations, with a calculation of the temperature fields in meridional sections of the shell, the heat-conduction equation is obtained in a similar coordinate system with a curvilinear coordinate s along a generator and a coordination y along the normal to the shell surface. Algorithms, obtained using the finite-difference matrix double-sweep method [2–4], are proposed for the practical solution of boundary-value problems to compute the unsteady temperature fields and stresses.  相似文献   

20.
借助于变厚度圆薄板非线性动力学变分方程和协调方程,给出了变厚度扁薄锥壳的非线性动力学变分方程和协调方程· 假设薄膜张力由两项组成,将协调方程化为两个独立的方程,选取变厚度扁锥壳中心最大振幅为摄动参数,采用摄动变分法,将变分方程和微分方程线性化· 对周边固定的圆底变厚度扁锥壳的非线性固有频率进行了求解;一次近似得到了变厚度扁锥壳的线性固有频率,三次近似得到了变厚度扁锥壳的非线性固有频率,且绘出了固有频率与静载荷、最大振幅、变厚度参数的特征曲线图· 为动力工程提供了有价值的参考·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号