首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
A high-performance liquid chromatographic (HPLC) method for the determination of a new H2 receptor antagonist, 3-amino-5-[3-[4-(piperidinoindanyloxy)]propylamino] -1-methyl-1H-1,2,4-triazole (I), in human plasma and urine was developed. The method employs liquid-liquid extraction of the analyte and an internal standard and chromatographic separation using an alkylphenyl-bonded HPLC column. The total time of chromatography was less than 10 min. Sensitivity was 10 ng/ml for the plasma analysis and 1 microgram/ml for the analysis of I from urine. The coefficients of variation, based on interpolated concentrations, were less than 10%. The method was used for more than 5000 samples during clinical pharmacokinetic studies.  相似文献   

2.
A sensitive, selective, and rapid high-performance liquid chromatographic procedure was developed for the determination of isoxicam in human plasma and urine. Acidified plasma or urine were extracted with toluene. Portions of the organic extract were evaporated to dryness, the residue dissolved in tetrahydrofuran (plasma) or acetonitrile (urine) and chromatographed on a mu Bondapak C18 column preceded by a 4-5 cm X 2 mm I.D. column packed with Corasil C18. Quantitation was obtained by UV spectrometry at 320 nm. Linearity in plasma ranged from 0.2 to 10 micrograms/ml. Recoveries from plasma samples seeded with 1.8, 4 and 8 micrograms/ml isoxicam were 1.86 +/- 0.077, 4.10 +/- 0.107 and 8.43 +/- 0.154 micrograms/ml with relative standard deviations of 3.3%, 2.5% and 5.4%, respectively. The linearity in urine ranged from 0.125 to 2 micrograms/ml. The precision of the method was 3.3-9.0% relative standard deviation over the linear range.  相似文献   

3.
A high-performance liquid chromatographic method is described for monitoring plasma concentrations of cinromide (3-bromo-N-ethylcinnamamide) and its de-ethylated metabolite. Carbamazepine levels can be easily measured by the same technique. The N-isopropyl analogue of cinromide is used as internal standard, and all compounds are easily separated on a reversed-phase column operated at 55 degrees with a small-diameter pre-column maintained at the same temperature. The extraction is rapid and generally applicable to plasma and urine samples that are to be analyzed by reversed-phase chromatography. Short- and long-term reproducibility studies show less than 4% relative standard deviation for replicate determinations for all drugs. Limits of quantitation are 10-20 ng/ml with an internal standard concentration of 3 micrograms/ml. Another metabolite of cinromide, 3-bromocinnamic acid, which may have some anticonvulsant effect, can be analyzed simultaneously by buffering the mobile phase and adding an ion-pairing reagent.  相似文献   

4.
S E Fowles  D M Pierce 《The Analyst》1989,114(11):1373-1375
A rapid, sensitive and reliable reversed-phase high-performance liquid chromatographic (HPLC) method with UV detection has been developed for the assay of a novel anti-herpes agent, 9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine (BRL-39123), in human plasma and urine. The drug and the internal standard, the structural analogue BRL-42377, were extracted from the biological matrix by adsorption on a cation-exchange column and were subsequently eluted under alkaline conditions prior to HPLC. The method is reproducible, with coefficients of variation of ca. 5%, and linear from 0.1 to at least 30 micrograms ml-1 in plasma and from 50 to at least 2000 micrograms ml-1 in urine. The method has been used extensively to measure BRL-39123 in plasma and urine samples generated during clinical studies and is adequate for defining pharmacokinetics at projected therapeutic doses.  相似文献   

5.
A rapid, sensitive and robust assay procedure using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the determination of famotidine in human plasma and urine is described. Famotidine and the internal standard were isolated from plasma samples by cation-exchange solid-phase extraction with benzenesulfonic acid (SCX) cartridges. The urine assay used direct injection of a diluted urine sample. The chromatographic separation was accomplished by using a BDS Hypersil silica column with a mobile phase of acetonitrile-water containing trifluoroacetic acid. The MS/MS detection of the analytes was set in the positive ionization mode using electrospray ionization for sample introduction. The analyte and internal standard precursor-product ion combinations were monitored in the multiple-reaction monitoring mode. Assay calibration curves were linear in the concentration range 0.5--500 ng ml(-1) and 0.05--50 microg ml(-1) in plasma and urine, respectively. For the plasma assay, a 100 microl sample aliquot was subjected to extraction. To perform the urine assay, a 50 microl sample aliquot was used. The intra-day relative standard deviations at all concentration levels were <10%. The inter-day consistency was assessed by running quality control samples during each daily run. The limit of quantification was 0.5 ng ml(-1) in plasma and 0.05 microg ml(-1) in urine. The methods were utilized to support clinical pharmacokinetic studies in infants aged 0-12 months.  相似文献   

6.
A simple and selective high-performance liquid chromatographic method with ultraviolet detection at 215 nm for the determination for pemoline in rat plasma, urine and tissues is described. Pemoline in the samples was extracted with methylene chloride at pH 10 and the organic phase was evaporated after adding 5-methyl-5-phenylhydantoin used as an internal standard. Pemoline and the internal standard were separated on a Kaseisorb LC C8-60-5 reversed-phase column. The limits of determination of pemoline in 0.1-0.2 ml of plasma, urine and tissue homogenates were 2, 100 and 20 ng, respectively. The method should be useful for studies of the pharmacokinetics and distribution of pemoline in small animals.  相似文献   

7.
A high-performance liquid chromatographic method for the measurement of bumetanide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol-water-glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5-2000 ng/ml.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic assay was developed for the quantitative determination of major erythromycin components and their potential metabolites or degradation products in plasma and urine. An ether extract of alkalized plasma sample was chromatographed on a reversed-phase column and the components in the column effluent were monitored by an electrochemical detector. The recovery of the drug from extraction was virtually 100%. The detection limits for erythromycin A in plasma were 5-10 ng/ml and 30 ng/ml using 1 and 0.2 ml of sample, respectively. For urine samples, a simple one-step deproteinization with two volumes of acetonitrile was satisfactory for analysis. The method has been evaluated in plasma and urine from dogs receiving oral or intravenous erythromycin A. The standard curves for potential metabolites or degradation products were not constructed due to the lack of sufficient samples.  相似文献   

9.
High-performance liquid chromatographic methods for quantification of a novel carbapenem anti-infective agent, I, in plasma and urine have been developed, validated, and applied to clinical samples. The carbapenem is stabilized in the matrix by the addition of a non-nucleophilic buffer, rapid freezing, and storage at -70 degrees C. After addition of another carbapenem, II, as internal standard, plasma proteins are precipitated with acetonitrile, which is subsequently extracted from the sample with methylene chloride. A portion of the aqueous phase is injected onto a reversed-phase phenyl column that is eluted with 4% (v/v) acetonitrile in 15 mM ammonium phosphate (pH 7.4). The urine assay entails addition of the internal standard II to buffered urine, which is subsequently extracted with methylene chloride prior to injection of the aqueous phase onto a cation-exchange column. The urine assay mobile phase is 5% v/v tetrahydrofuran in 100 mM sodium acetate (pH 5.4). The detector response at 313 nm is a linear (r greater than 0.99) function of concentration over the ranges 0.50-100 micrograms/ml and 2.0-200 micrograms/ml for the plasma and urine assays, respectively. Thermal degradation products do not interfere with either assay. These assays have proven to be accurate, precise, reproducible, and rugged during clinical sample analyses.  相似文献   

10.
A simple and sensitive high-performance liquid chromatographic procedure to determine spironolactone and its three major metabolites in biological specimens is described. The assay involves sequential extraction on C18 and CN solid phases, and subsequent separation on a reversed-phase column. In plasma samples, spironolactone and its metabolites were completely separated within 8 min using an isocratic mobile phase, while in urine samples a methanol gradient was necessary to achieve a good separation within 14 min. Recoveries for all analytes were greater than 80% in plasma and 72% in urine. Linear responses were observed for all compounds in the range 6.25-400 ng/ml for plasma and 31.25-2000 ng/ml for urine. The plasma and urine methods were precise (coefficient of variation from 0.8 to 12.5%) and accurate (-12.1% to 7.4% of the nominal values) for all compounds. The assay proved to be suitable for the pharmacokinetic study of spironolactone in healthy human subjects.  相似文献   

11.
Achiral and chiral semi-micro column high-performance liquid chromatographic methods with fluorescence detection to determine methamphetamine and amphetamine in human hair are described. These compounds were extracted into 5% trifluoroacetic acid (TFA) in methanol, derivatized with 4-(4,5-diphenyl-1H-imidazol-2-yl)-benzoyl chloride and separated either on a 250 x 1.5 mm i.d. octadecyl-silane (ODS) or a 150 x 2 mm i.d. OD-RH column. Linear calibration curves extending over a wide range of concentration that covers the practical samples were obtained for amphetamine, methamphetamine and their enantiomers (r = 0.999). Resolution values for amphetamine and methamphetamine enantiomers were 3.4 and 1.1, respectively. Intra- and inter-day variations of both the methods were not larger than 8.9% expressed as relative standard deviations (n >/= 5). The limits of detection at a signal-to-noise ratio of 3 obtained by both the methods were in the range of 1.0-4.7 fmol/5 microL injection with the achiral method being more sensitive. Abusers' hair samples were analyzed by the two methods and only the S(+)-enantiomers were found in eight Japanese abusers' hair samples. The achiral method was used to study the concentrations of these compounds in single black and white hair strands of abusers.  相似文献   

12.
A high-performance liquid chromatographic method was developed for the simultaneous determination of haloperidol and reduced haloperidol in human plasma, urine and rat tissue homogenates using bromperidol as an internal standard. The method involved extraction followed by injection of 50-80 microliters of the aqueous layer onto a C18 reversed-phase column. The mobile phase was 0.5 M phosphate buffer-acetonitrile-methanol (58:31:11, v/v/v) and the flow-rate was 0.6 ml/min. The column effluent was monitored by ultraviolet detection at 214 nm. The retention times for reduced haloperidol, haloperidol and bromperidol were 5.4, 7.2 and 8.4 min, respectively. The detection limits for haloperidol and reduced haloperidol in human plasma were both 0.5 ng/ml, and the corresponding values in human urine were both 5 ng/ml. The coefficients of variation of the assay were generally low (below 10.7%) for plasma, urine, blood and tissue homogenates. No interferences from endogenous substances or any drug tested were found.  相似文献   

13.
The automated determination of amifloxacin and two of its principal metabolites in human plasma and urine by column-switching high-performance liquid chromatography is described. Plasma or urine samples, diluted 1:1 with 0.5 M sodium citrate buffer pH 2.5, were directly injected onto a cation-exchange pre-column. Following a 2.0-min wash of the pre-column with water at a flow-rate of 1.1 ml/min, the effluent from the pre-column was directed to the analytical column by a column-switching device. The precision of the plasma and urine methods ranged from a +/- 1.9 to +/- 3.6% for all compounds. The accuracies of the methods were within a range of -3.3% to 6.4% of the nominal values for all compounds. Linear responses were observed for all the standards in the range 0.10-5.0 micrograms/ml for plasma and 0.50-100 micrograms/ml for urine for all three compounds. The minimum quantifiable levels were 0.10 and 0.50 micrograms/ml for plasma and urine, respectively. The analytical methods may be used to quantify amifloxacin and the piperazinyl-N-desmethyl and piperazinyl-N-oxide metabolites in plasma and urine samples obtained from humans, monkeys, dogs and rats.  相似文献   

14.
A simple and reliable high-performance liquid chromatographic (HPLC) method with UV-Vis detection has been developed and validated for the determination of vigabatrin (VG) in human plasma and urine. The samples were pre-column derivatizated with 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS). A good chromatographic separation was achieved on a C18 column with a mobile phase consisting of acetonitrile and 10 mM orthophosphoric acid (pH 2.5) gradient elution. Tranexamic acid was used as an internal standard (I.S.). The method was linear over the concentration range of 0.8-30.0 microg/ml for both samples. The method is precise (relative standard deviation (R.S.D.) <9.13%) and accurate (relative mean error (RME) <-8.75%); analytical recoveries were 81.07% for plasma and 83.05% for urine. The assay was applied to pharmacokinetic study in a healthy volunteer after a single oral administration of 1 g of vigabatrin.  相似文献   

15.
A sensitive and specific capillary gas chromatographic (GC) assay was developed for the quantitation of the quaternary ammonium steroidal neuromuscular blocking drugs pancuronium (PANC), vecuronium (VEC) and pipecuronium (PIP), as well as the metabolites 3-desacetylpancuronium (3-desPANC) and 3-desacetylvecuronium (3-des VEC) in plasma, bile and urine; the putative metabolite 3-desacetylpipecuronium (3-des PIP) was extracted and quantitated only in urine. The procedure employed a single dichloromethane extraction of the iodide ion-pairs of the monoquaternary or bisquaternary ammonium compounds (including internal and external standards) from acidified, ether-washed biological fluid followed by the formation of stable O-tert.-butyldimethylsilyl derivatives at the 3-hydroxy steroidal position of the metabolites. An automated capillary GC system fitted with a nitrogen-sensitive detector and an integrator was then used to analyze and quantitate both parent compounds and their derivatized metabolites. Optimal extraction, derivatization and GC conditions, as well as short-term stability and recoveries of these drugs and metabolites in plasma, are reported. Electron ionization mass spectrometry combined with GC was used to confirm the identities of compounds eluted from the column. The assay demonstrated a 10(3)-fold linear range up to 5000 ng/ml for PANC, VEC, 3-des VEC and PIP, and lower limits of detection with adequate precision of 2 ng/ml for PANC, VEC and PIP, and 4 ng/ml for 3-des VEC; 3-des PANC was linear from 8 to 500 ng/ml while 3-des PIP was linear from 25 to 1000 ng/ml. The precision (coefficient of variation) of the calibration curves for underivatized drugs and their derivatized metabolites over the linear ranges was 2-20% and the reproducibility of the assay over a range of clinical concentrations of these drugs found in human plasma was 5-16% for PANC, 2-4% for VEC and 6-11% for PIP. No interferences were detected in the assay of plasma samples from 106 surgical patients.  相似文献   

16.
A simple and rapid high-performance liquid chromatographic method for the determination of proquazone (PQZ) and its major metabolite, m-hydroxyproquazone, in spiked human plasma and urine was developed. Plasma samples were purified using acetonitrile as a protein precipitant, while urine samples were diluted only with the mobile phase and filtered prior to injection. Samples containing the parent compounds and glafenine (internal standard) were eluted from a reversed-phase C8 column using acetonitrile-0.025 M sodium acetate (60 + 40) adjusted to pH 5 as the mobile phase and detected at 234 nm. Peak area ratios of the analytes versus internal standard were used for calibration. The mean recoveries from plasma and urine samples spiked with PQZ and its m-hydroxy metabolite ranged from 97.87 to 103.88%. The relative standard deviation for the within- and between-day analyses were < 4%. The proposed method was applied for the assay of PQZ in laboratory-made tablets.  相似文献   

17.
Sensitive enantioselective liquid chromatographic assays using tandem mass spectrometric detection were developed and validated for the determination of S-cetirizine (S-CZE) and R-cetirizine (R-CZE) in guinea pig plasma, brain tissue, and microdialysis samples. Enantioselective separation was achieved on an alpha1-acid glycoprotein column within 14 min for all methods. A cetirizine analog, ucb 20028, was used as internal standard. Cetirizine and the internal standard were detected by multiple reaction monitoring using transitions m/z 389.1 --> 200.9 and 396.1 --> 276.1, respectively. The samples were prepared using protein precipitation with acetonitrile. For guinea pig plasma, the assay was linear over the range 0.25-5000 ng/mL for both S-CZE and R-CZE, with a lower limit of quantification (LLOQ) of 0.25 ng/mL. For the brain tissue and microdialysis samples, the assays were linear over the range 2.5-250 ng/g and 0.25-50 ng/mL, respectively, and the LLOQ values were 2.5 ng/g and 0.25 ng/mL, respectively. The intra- and inter-day precision values were < or =7.1% and < or =12.6%, respectively, and the intra- and inter-day accuracy varied by less than +/-8.0% and +/-6.0% of the nominal value, respectively, for both enantiomers in all the matrices investigated.  相似文献   

18.
A robust ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the determination of morphine‐6‐d ‐glucuronide (M6G), morphine‐3‐d ‐glucuronide (M3G) and morphine (MOR) in human plasma and urine has been developed and validated. The analytes of interest were extracted from plasma by protein precipitation. The urine sample was prepared by dilution. Both plasma and urine samples were chromatographed on an Acquity UPLC HSS T3 column using gradient elution. Detection was performed on a Xevo TQ‐S tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. Matrix interferences were not observed at the retention time of the analytes and internal standard, naloxone‐D5. The lower limits of quantitation of plasma and urine were 2/0.5/0.5 and 20/4/2 ng/mL for M6G/M3G/MOR, respectively. Calibration curves were linear over the concentration ranges of 2–2000/0.5–500/0.5–500 and 20–20,000/4–4000/2–2000 ng/mL for M6G/M3G/MOR in plasma and urine samples, respectively. The precision was <7.14% and the accuracy was within 85–115%. Furthermore, stability of the analytes at various conditions, dilution integrity, extraction recovery and matrix effect were assessed. Finally, this quantitative method was successfully applied to the pharmacokinetic study of M6G injection in Chinese noncancer pain patients.  相似文献   

19.
Mesocarb metabolism in humans is the target of this investigation. A high-performance liquid chromatographic (LC) method with electrospray ionization (ESI)-ion trap mass spectrometric (MS) detection ion trap "SL" for the simultaneous determination of mesocarb and its metabolites in plasma and urine is developed and validated. Ten metabolites and the parent drug are detected in human urine, and only four in human plasma, after the administration of a single oral dose of 10 mg of mesocarb (Sydnocarb, two 5-mg tablets). Seven of this metabolites have been found for the first time. The confirmation of the results and identification of all the metabolites except amphetamine is performed by LC-MS, LC-MS-MS, and LC-MS3. In the case of doping analysis, the reliable detection time for mesocarb (long-life dihydroxymesocarb metabolites of mesocarb) is approximately 10-11 days after the administration of the drug, which is a significant increase over the existing data. The detection of amphetamine in plasma and urine is made using simple flow-injection analysis without a chromatographic separation. The addition-calibration method is used with plasma and urine. The mean recoveries from plasma are 49.2% and 57.4% for mesocarb concentrations of 33.0 and 66.0 ng/mL, respectively, whereas the recoveries from human urine are 76.9% and 81.4% for concentrations of 1 and 2 ng/mL, respectively. Calibration curves (using an internal standard method) are linear (r2>0.9969) for concentrations 0.6 to 67 ng/mL and from 0.05 to 5 ng/mL in plasma and urine, respectively. Both intra- and interassay precision of plasma control samples at 3, 40, and 55 ng/mL are lower than 6.2%, and the concentrations do not deviate for more than -3.4% to 7.3% from their nominal values. In urine, intra- and interassay precision of control samples at 0.08, 1.5, and 3.0 ng/mL is lower than 14.1%, with concentrations not deviating for more than -11.3% to 13.7% from their nominal values. The plasma disappearance curve of the parent drug is obtained. The major pharmacokinetic parameters are calculated.  相似文献   

20.
A high-performance liquid chromatographic method was developed for determination of the platelet activating factor antagonist CV-3988 in human plasma and urine. After development of a column extraction procedure without an internal standard, a more satisfactory organic extraction procedure was set up with amiodarone as internal standard. Linearity of the calibration curves was found in the range 0.0625-10 micrograms/ml CV-3988. Reproducibility was higher than 10% for the column extraction and lower than 10% for the organic extraction procedure. Recovery of CV-3988 from plasma averaged 81.7% for the column procedure and 40% for the organic extraction. Urine samples could be extracted only by the organic extraction procedure. The organic extraction procedure was applied to the determination of CV-3988 in plasma and urine samples after intravenous administration to normal volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号