首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dispersion of carbon nanotubes into solvents affects their surface chemistries, electronic structures, and subsequent functionalization. In this Communication, a water-soluble self-doped polyaniline nanocomposite was fabricated by in situ polymerization of the 3-aminophenylboronic acid monomers in the presence of single-stranded DNA dispersed- and functionalized-single-walled carbon nanotubes. For the first time, we found that the carbon nanotubes became novel active stabilizers owing to the DNA functionalization. The nanotubes reduced the polyaniline backbone from the unstable, degradable, fully oxidized pernigraniline state to the stable, conducting emeraldine state because of their reductive ability, which could improve the chemical stability of the self-doped polyaniline. Electrical measurements demonstrate that the conductivity of the nanocomposite was much higher than that of the pure self-doped polyaniline in both acidic and neutral solutions.  相似文献   

2.
A nanocomposite of poly(anilineboronic acid), a self-doped polyaniline, with ss-DNA-wrapped single-walled carbon nanotubes (ss-DNA/SWNTs) was fabricated on a gold electrode by in situ electrochemical polymerization of 3-aminophenylboronic acid monomers in the presence of ssDNA/SWNTs. We used this nanocomposite to detect nanomolar concentrations of dopamine and found that the sensitivity increased 4 orders of magnitude compared to the detection at an electrode modified with only poly(anilineboronic acid). For the first time, this work reports the multiple functions of the ss-DNA/SWNTs in the fabrication and biosensor application of a self-doped polyaniline/ss-DNA/SWNT nanocomposite. First, the ss-DNA/SWNTs acted as effective molecular templates during polymerization of self-doped polyaniline so that not only was the polymerization speed increased but also the quality of the polymer was greatly improved. Second, they functioned as novel active stabilizers after the polymerization, significantly enhancing the stability of the film. Furthermore, the ss-DNA/SWNTs also acted as conductive polyanionic doping agents in the resulting polyaniline film, which showed enhanced conductivity and redox activity. Finally, the large surface area of carbon nanotubes greatly increased the density of the functional groups available for sensitive detection of the target analyte. We envision that polyaniline with other functional groups as well as other conducting polymers may be produced for different targeted applications by this approach.  相似文献   

3.
Luo  Xiaoqing  Weng  Qianfeng  Li  Jinxiang 《Chromatographia》2022,85(8):689-697
Chromatographia - A new composite of o-aminobenzene sulfonic acid self-doped polyaniline (SPAN) and multi-walled carbon nanotubes was prepared on a stainless steel wire by electrochemical method as...  相似文献   

4.
聚苯胺/分级碳纳米管复合材料的制备与性能研究   总被引:7,自引:2,他引:7  
在众多的导电高分子中,聚苯胺具有原料易得、合成简便、能进行快速与可逆的氧化还原反应、可储存高密度的电荷等优点,在能源、光电子器件、电容器、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术等领域有着诱人的应用前景.近年来,将导电聚苯胺用于超电容器,倍受人们的广泛关注.  相似文献   

5.
A nanocomposite consisting of polyaniline and multiwalled carbon nanotubes was tethered with a thiolated thrombin-specific aptamer and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a limit of detection of 80 fM. Tethering was accomplished via a thiol-ene reaction between thiolated thrombin aptamer (TTA) and oxidized polyaniline (PANI) that was chemically synthesized in the presence of solution-dispersed multiwalled carbon nanotubes (MWCNTs). The modified GCE exhibits a pair of well-defined redox peaks (at 50/?25 mV) of self-doped PANI in neutral solution, and the tethered TTA-thrombin interaction gives a decreased electrochemical signal. Cyclic voltammetry, scanning electron microscopy and ultraviolet visible spectroscopy were used to characterize the film properties. This amperometric aptasensor is sensitive, selective and reproducible. It was applied to the determination of thrombin in spiked human serum (0.2 to 4 nM) and gave recoveries that ranged from 95 to 102%.
Graphical abstract A nanocomposite consisting of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) was tethered with a thiolated thrombin aptamer (TTA) and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a 80 f. detection limit.
  相似文献   

6.
In this work, we present a facile method for preparation of novel polyaniline(PANI)/titanate composite nanotubes by in situ chemical oxidative polymerization directed by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The block copolymer adsorbed onto the surface of the titanate nanotubes acts as a soft template. The obtained nanocomposite has a core-shell structure in which titanate nanotubes are encapsulated by uniform PANI layers. Their structure and morphology were characterized by various experimental techniques. A possible formation mechanism of composite nanotubes is also proposed in the paper.  相似文献   

7.
自掺杂磺酸化聚苯胺之最优化实验设计(英文)   总被引:1,自引:0,他引:1  
李文亚  胡启章 《电化学》2005,11(4):360-368
应用实验设计法包括部分析因设计与中心组合设计,优化自掺杂磺酸化聚苯胺的导电性.部分析因设计发现,需用低温(4℃)、短反应时间(1 h)和少量发烟硫酸(10 mL)等实验条件进行磺酸化反应才能得到好的导电性(ca.127 mS.cm-1);中心组合设计与确认实验表明,其最佳导电性(ca.141 mS/cm)的磺酸化条件是4℃、75 m in反应时间以及8 mL 30%的发烟硫酸.应用傅立叶变换红外光谱(FTIR)、四探针与X光光电子能谱等分析制备的材料.此外,发现磺酸化速率与程度与聚合反应时所使用的酸有关.  相似文献   

8.
Composites based on polyaniline are prepared via the chemical oxidative polymerization of aniline in the presence of multiwalled carbon nanotubes modified by the sorption of the co-oxidants IrC 6 2? and 2,2′-azino-bis(3-ethyl-benzthiazolin-6-sulfonate). The approach used here, in combination with corresponding conditions of polymerization, ensures the synthesis of composite materials with a high morphological homogeneity of the polymer phase. The study of the electrochemical properties of composites (the reversibility of redox transitions and the stability of capacity parameters) indicates that that they are strongly influenced by the morphological features of the polymer coating. The composite prepared with the use of nanotubes modified by 2,2′-azino-bis(3-ethyl-benzthiazolin-6-sulfonate) possesses better electrochemical characteristics. This effect is associated with a closer to perfect morphology of the polymer coating, a coaxial polyaniline shell highly uniform in thickness along the entire length of nanotubes.  相似文献   

9.
Interactions between the π bonds in the aromatic rings of polyaniline (PANI) with carbon nanostructures (CNs) facilitate charge transfer between the two components. Different types of phenyleneamine‐terminated CNs, including carbon nano‐onions (CNOs) and single‐walled and multi‐walled carbon nanotubes (SWNTs and MWNTs, respectively), were prepared as templates, and the CN/PANI nanocomposites were easily prepared with uniform core–shell structures. By varying the ratio of the aniline monomers relative to the CNs in the in situ chemical polymerization process, the thickness of the PANI layers was effectively controlled. The morphological and electrical properties of the nanocomposite were determined and compared. The thickness and structure of the PANI films on the CNs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and infrared spectroscopy. TEM and SEM revealed that the composite films consisted of nanoporous networks of CNs coated with polymeric aniline. The electrochemical properties of the composites were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. These studies showed that the CN/PANI composite films had lower resistance than pure polymeric films of PANI, and the presence of CNs much improved the mechanical stability. The specific electrochemical capacitance of the CNO/PANI composite films was significantly larger than for pure PANI.  相似文献   

10.
Composites of functionalized single-wall carbon nanotubes and polyaniline are deposited onto electrodes by in situ electrochemical polymerization. Their electrochemical behavior and differential capacitance are studied by cyclic voltammetry, electrochemical impedance spectroscopy, and chronovoltamperometry. The differential capacitance of the composite electrode exceeds that of pure polyaniline film deposited onto electrode, which can be explained by the nanotubes’ loosening effect on the polyaniline structure. The composite-electrode capacitance is as large as 1000 F g−1 or higher. Thus obtained composite films were used as a support for deposited platinum-ruthenium catalyst. The Pt-Ru structure and catalytic properties in the methanol oxidation reaction are studied. It is shown that the specific current of methanol oxidation at Pt-Ru is larger by a factor of 7–15 than those measured when pure polyaniline, pure carbon nanotubes, or standard Vulcan XC-72 carbon black are used as supports. It is found that the catalytic activity is the same for all studied supports, provided the current is reduced to the unit of Pt-Ru true surface area. Thus, the observed large catalytic effect is associated with the structure and high dispersivity of the electrodeposited metals incorporated to the single-wall carbon nanotubes-polyaniline composite.  相似文献   

11.
A novel strategy for the synthesis of a substituted polyaniline that can be switched between a self-doped and non-self-doped state is presented. The approach uses the complexation between boronic acid-substituted aniline, a diol (d-fructose), and fluoride to generate an anionic monomer. Under these conditions, chemical polymerization results in a self-doped, water-soluble, conducting polyaniline under neutral aqueous conditions. The self-doped polymer can be simply and reversibly converted to an insoluble non-self-doped form by reducing the concentration of fluoride. Characteristics of the polymerization reaction and the resulting polymer are discussed.  相似文献   

12.
The nano-silicon connected by a nest-like polyaniline (PANi) was simply synthesized by a chemical polymerization process. The cycle stability and rate performance of the Si/PANi composite were greatly enhanced compared with the pristine nano-silicon. The improved electrochemical characteristics are attributed to the volume buffering effect as well as effective electronic conductivity of the nest-like polyaniline, and lower aggregation of the nano-silicon.  相似文献   

13.
In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.  相似文献   

14.
Wang S  Bao H  Yang P  Chen G 《Analytica chimica acta》2008,612(2):182-189
In this report, a four-component nanocomposite, trypsin-immobilized polyaniline-coated Fe3O4/carbon nanotube composite, was synthesized for highly efficient protein digestion. Fe3O4 was deposited by the chemical coprecipitation of Fe2+ and Fe3+ in an alkaline solution containing carbon nanotubes (CNTs) to prepare nano-Fe3O4/CNT composite. Subsequently, polyaniline (PA) was assembled on the Fe3O4/CNT composite by the in situ polymerization of aniline in the presence of trypsin to obtain trypsin-immobilized PA/Fe3O4/CNT nanocomposite. The novel 1D superparamagnetic biomaterial has been characterized by TEM, SEM, XRD, and magnetometric analysis. The feasibility and performance of the unique magnetic biomaterial have been demonstrated by the tryptic digestion of bovine serum albumin, myoglobin, and lysozyme within 5 min. The digests were identified by MALDI-TOF MS with sequence coverages that were comparable to those obtained from the conventional in-solution tryptic digestion. The present biocomposite offers considerable promise for protein analysis due to its high magnetic responsivity and excellent dispersibility. It can be easily isolated from the digests with the aid of an external magnetic field. Because the enzyme-immobilized nanocomposite can be prepared by a simple two-step deposition approach at low cost, it may find a wide range of biological applications including proteome research.  相似文献   

15.
Multishell nanotubes of polyaniline and carbon were synthesized via a template approach. A thin layer of MnO2 coated on carbon nanotubes acts as a reactive template for the consequent formation of the polyaniline coating. The polyaniline-carbon nanotubes show enhanced dispersibility in water and can be possibly used as a functional material of electrochemical capacitors with improved performance. The general method operates by coating carbon nanotubes on functional materials such as poly (3,4-ethylenedioxythiophene), polypyrrole, silica, and carbon.  相似文献   

16.
运用重氮化技术制备了水溶性磺化碳纳米管,在此基础上,以不同直径的磺化碳纳米管(1~2 nm,<8 nm,10~20 nm,30~50 nm)为载体,采用原位氧化聚合方法合成了一系列磺化碳纳米管改性聚苯胺复合材料.红外和紫外-可见光谱分析表明,聚苯胺与磺化碳纳米管之间存在π-π相互作用,并形成了电荷转移复合物;且随着碳纳...  相似文献   

17.
Raman spectroscopy is a powerful technique that is used to characterize or observe alterations in the structure or properties of carbon nanotubes and its composites. This method can provide information about electronic changes or quantify them. We used Raman spectroscopy to study the chemical and electronic changes in a composite formed by titanium dioxide nanoparticles and single-walled carbon nanotubes. This composite was characterized by scanning electron microscopy to investigate the morphology and by thermogravimetric analyses to assess the thermal stability of the isolated carbon nanotubes as compared with the nanotubes by titanium dioxide nanoparticles. The Raman results showed that the modification of the nanotubes with the TiO2 nanoparticles generates a new material with different structure of the nanotubes, resulting in a decrease in defects. The charge transfer from the TiO2 nanoparticles to the nanotubes alters the electronic properties of both moieties in the hybrid material. The interaction between the nanotubes and nanoparticles decreases the CC bound order of the nanotubes and decreases their thermal stability.  相似文献   

18.
A novel MB‐SWNT‐sol‐gel nanocomposite material was prepared by the sol‐gel process incorporating a redox mediator and carbon nanotubes. The electrocatalytic properties of the nanomaterial based sensor toward NADH oxidation were studied by electrochemical measurements. Significant enhancement of oxidation current is obtained at electrodes modified by MB‐SWNT‐sol‐gel in comparison with the analogous carbon black and/or graphite composite modified electrode. The usefulness of the nanocomposite material as a matrix for immobilizing enzymes is also demonstrated. Analytical parameters of D ‐lactate biosensors with and without SWNT in the hybrid film were compared demonstrating that performance of the biosensor was significantly improved when introducing SWNT.  相似文献   

19.
基于碳纳米管-聚苯胺纳米复合物的超级电容器研究   总被引:10,自引:2,他引:8  
邓梅根  杨邦朝  胡永达  汪斌华 《化学学报》2005,63(12):1127-1130
为了提高碳纳米管的比容, 采用化学原位聚合的方法在碳纳米管的表面包覆聚苯胺, 制备碳纳米管-聚苯胺纳米复合物. 运用TEM和IR对样品进行了表征. 通过循环伏安研究样品的电化学特性. 利用恒流充放电考察基于碳纳米管-聚苯胺复合物超级电容器的性能. 在相同实验条件下, 对碳纳米管进行了比较分析. 实验结果表明, 在电流密度为10 mA/cm2时, 碳纳米管和碳纳米管-聚苯胺复合物的比容分别为52和201 F/g. 基于碳纳米管-聚苯胺纳米复合物的超级电容器的能量密度达到6.97 Wh/kg, 并且具有良好的功率特性.  相似文献   

20.
The method of synthesizing nanocomposites based on multiwalled carbon nanotubes and a new polymer poly(3,6-bis(phenylamino)-2,5-dichlorobenzoquinone) containing polyaniline chains with electroactive substituents in the N-position is developed, and the electrochemical properties of the composites are studied. The in situ oxidative polymerization of N-substituted aniline performed in the presence of multiwalled carbon nanotubes makes it possible to design an organized, effective structure of the conducting composite material with enhanced electrochemical capacity and stable capacity parameters during long cycling in protic (1 mol/L H2SO4) and aprotic (1 mol/L LiClO4 in propylene carbonate) electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号