首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

2.
Nitrosylation reactions are rare in the context of low valent Re(I)- and Tc(I)-tricarbonyl complexes so far. We herein describe a method for the conversion of a “M(CO)3-moiety” (M = Re, Tc) into a dicarbonyl-nitrosyl moiety “M(CO)2NO”, the synthesis of important precursor complexes and intermediates and possible applications for this new kind of Re- and Tc-chemistry.The behavior of the complex [ReCl3(CO)2(NO)] in water was studied in detail and compared to that of [ReCl3(CO)3]2−. Contrary to the conversion of [ReCl3(CO)3]2− to the mixed aquo-carbonyl complex [Re(OH2)3(CO)3]+ in water, one chloride remains initially bound to the metal center in the dicarbonyl-nitrosyl complex, making [ReCl(OH2)2(CO)2(NO)]+ the main species for further reactions. In this context, we isolated and characterized the complex [Re(μ3-O)(CO)2(NO)]4. Examples of complexes with different bi- and tridentate ligands based on ReCl3(CO)2(NO)] are discussed.For the development of potential new radiopharmaceuticals we also adapted the nitrosylation technique to the n.c.a. level with 99mTc. [99mTc(OH2)3(CO)3]+ served as starting material to form a 99mTc(CO)2(NO)-core. Labelling reactions with ligands such as iminodiacetic acid (IDA), nitrilotriacetic acid (NTA) and diethylenetriamine pentaacetic acid (DTPA) were performed, resulting in the complexes [99mTc(IDA)(CO)2(NO)], [99mTc(NTA)(CO)2(NO)] and [99mTc(DTPA)(CO)2(NO)]. In this way, the “nitrosyl-approach” adds a new and challenging synthetic tool to the already established organometallic chemistry of Re- and Tc-tricarbonyl complexes.  相似文献   

3.
A procedure was developed for preparing [99mTcX(CO)5] (X = Cl, Br, I) in a reasonable yield by high-pressure carbonylation with CO of 99mTcO4 in aqueous solutions. In the synthesis, the substantial part of the target product is accumulated in the gas phase and can be transferred from the autoclave into various solvents when relieving the pressure. Compounds [99mTcX(CO)5] (X = Cl, Br, I) are stable in solutions for several hours, but in the course of longer storage they gradually decompose to give the tricarbonyl species. Substitution of the halide ligands in [99TcX(CO)5] and [99mTcX(CO)5] with tert-butyl isocyanide and triphenylphosphine was studied. The structures of the complexes [Tc(CO)5(PPh3)]OTf and [Tc(CO)5(CNC(CH3)3)]ClO4 are presented.  相似文献   

4.
Reactions of 2-(diphenylphosphinomethyl)aniline, H2L1, with [MNCl2(PPh3)2] complexes (M = Re, Tc) give the bis-chelates [MNCl(H2L1)2]Cl (M = Re, Tc) or the mono-chelate [ReNCl2(PPh3)(H2L1)] depending on the conditions applied. The aminophosphine reacts as a bidentate, neutral ligand in all three cases. The complexes were studied spectroscopically and by X-ray crystallography.  相似文献   

5.
The organometallic precursor of fac-[99mTc(CO)3(H2O)3]+ has attracted much attention because of the robustness and small size of Tc(I)-tricarbonyl complexes compared to Tc(V) complexes and the good labeling affinity with a variety of donor atoms. Among various ligand systems, an iminodiacetic acid (IDA) was proven as a good chelating group to form a Tc(III)-compelx as well as has been shown its potential as a chelating system for fac-[99mTc(CO)3] precursor. In an attempt to confirm the similarity and the difference between 99mTc(CO)3-IDA and 99mTc-(IDA)2-complex, M(CO)3-IDA (M = 99mTc, Re) complexes of disofenin, mebrofenin and N-(3-iodo-2,4,6-trimethyl phenylcarbamoylmethyl) iminodiacetic acid were prepared, and the biological evaluation of 99mTc(CO)3-disofenin was performed. The 99mTc(CO)3-IDA complexes were prepared with a high radiolabeling yield (>98%) in a quantitative manner and showed a negative charge. The in vivo pharmacokinetic behavior of 99mTc(CO)3-disofenin showed a similar biological activity to 99mTc-(disofenin)2 in that those complexes were quickly cleared from the blood by the hepatocytes and excreted into the gallbladder and intestine. Accordingly, the 99mTc(CO)3-IDA derivatives of disofenin and mebrofenin might be used as hepatobiliary imaging agents. Since an IDA is a promising chelator for 99mTc-based radiopharmaceutical and the biological properties of 99mTc(CO)3-IDA derivative shows similar to that of 99mTc-complex, a biomolecule containing IDA can be freely radiolabeled with fac-[99mTc(CO)3]-precursor or 99mTc. However, the radiolabeling efficiency and the biological behavior demonstrates the favorable properties of 99mTc(CO)3-IDA compound for the development of a new imaging agent.  相似文献   

6.
The folate receptor (FR) is a high affinity membrane protein which is overexpressed on a wide variety of tumor cells, but highly restricted in normal tissues. Therefore folate derivatives labeled with short living isotopes such as 99mTc (γ, t1/2 = 6 h) or 188Re (β, t1/2 = 17 h) could be used for tumor diagnosis and therapy. In this respect there is a great interest to develop organometallic technetium(I) and rhenium(I) modified folate radiopharmaceuticals. For this purpose folic acid was functionalized with a tridentate picolylamine monoacetic acid chelating system. The chelating system was selectively coupled via an aminohexane spacer to the γ- or α-carboxyl group of the glutamate moiety of folic acid to obtain the corresponding γ- or α-folate derivative or - if directly attached to pteroic acid - the pteroate derivative. The derivatives were reacted with the precursor [M(OH2)3(CO)3]+ (M = 99mTc, Re) to form uniform organometallic folate complexes under mild reaction conditions. All compounds were chemically characterized by means of NMR, MS, IR and HPLC. The determination of the IC50-values for the PAMA-γ-folate derivative (100 nM) and the corresponding organometallic rhenium complex (110 nM) proved retained receptor binding properties. The radiolabeling with [99mTc(OH2)3(CO)3]+ was achieved in excellent yield (>95%) at low ligand concentration (10−4 M). The cell binding (>45% of total activity) and internalization (>15% of total activity) of all 99mTc-complexes was very high and specificity for the FR was proved by their complete displacement with excess folic acid. The 99mTc-complexes were positively tested for their plasma stability and for the absence of binding to plasma proteins.  相似文献   

7.
We describe reactions of [99mTc(H2O)3(CO)3)]+ (1) with Diels-Alder products of cyclopentadiene such as “Thiele’s acid” (HCp-COOH)2 (2) and derivatives thereof in which the corresponding [(Cp-COOH)99mTc(CO)3)] (3) complex did form in water. We propose a metal mediated Diels-Alder reaction mechanism. To show that this reaction was not limited to carboxylate groups, we synthesized conjugates of 2 (HCp-CONHR)2 (4a-c) (4a, R = benzyl amine; 4b, R = Nα-Boc-l-2,3-diaminopropionic acid and 4c, R = glycine). The corresponding 99mTc complexes [(4a)99mTc(CO)3)] 6a, [(4b)99mTc(CO)3)] 6b and [(4c)99mTc(CO)3)] 6c have been prepared along the same route as for Thiele’s acid in aqueous media demonstrating the general applicability of this synthetic strategy. The authenticity of the 99mTc complexes on the no carrier added level have been confirmed by chromatographic comparison with the structurally characterized manganese or rhenium complexes.Studies of the reaction of 1 with Thiele’s acid bound to a solid phase resin demonstrated the formation of [(Cp-COOH)99mTc(CO)3)] 3 in a heterogeneous reaction. This is the first evidence for the formation of no carrier added 99mTc radiopharmaceuticals containing cyclopentadienyl ligands via solid phase syntheses. Macroscopically, the manganese analogue 5a and the rhenium complexes 5b-c have been prepared and characterized by IR, NMR, ESI-MS and X-ray crystallography for 5a (monoclinic, P21/c, a = 9.8696(2) Å, b = 25.8533(4) Å, c = 11.8414(2) Å, β = 98.7322(17)°) in order to unambiguously assign the authenticity of the corresponding 99mTc complexes.  相似文献   

8.
Eight bile acid derivatives have been synthesized with alkyl chains of various length based tridentate ligand chelating system. These derivatives have been reacted with the precursor [Et4N]2[Re(CO)3Br3] and fac-[M(CO)3(H2O)3]+ (M = 99mTc, Re) in ethanol or ethanol–aqueous media to form water-soluble and stable organometallic complexes in good yields. 1H NMR, 13C NMR, IR and elemental analysis or HRMS spectroscopic analyses confirmed the tridentate complexation of the metal–tricarbonyl fragment exclusively via the tridentate chelates. In addition, the corresponding radioactive technetium-99m complexes were prepared successfully and challenged for stability in physiological phosphate buffer at 37 °C for 24 h. No decomposition of the complexes could be detected under the condition proving the stability of these complexes.  相似文献   

9.
Thymidine kinases have been identified as suitable targets for non-invasive imaging of gene therapy and cancer. Thus, there is a high interest in new, reliable and inexpensive radiolabeled thymidine analogues for these applications. In this study we present the synthesis and in vitro evaluation of M(CO)3-complexes of thymidine (M = 99mTc, Re) for potential use in SPECT tumor imaging. 5′-amino-5′-deoxythymidine was derivatized at position C5′ with spacers of various lengths (∼0-30 Å) carrying tridentate metal chelating entities such as iminodiacetic acid and picolylamine-N-monoacetic acid. The nucleoside derivatives were reacted with the precursors [ReBr3(CO)3]2− and [99mTc(OH2)3(CO)3]+, respectively. The organometallic thymidine complexes have been fully characterized by means of IR, NMR and mass spectrometry. Enzyme kinetic studies revealed mixed inhibition of the human cytosolic thymidine kinase with Ki values ranging from 4.4 to 334 μM for all thymidine complexes. Competitive inhibition of herpes simplex virus type 1 thymidine kinase was only achieved when thymidine and the metal core were separated by a spacer of approximately 30 Å length. These findings were supported by in silico molecular docking and molecular dynamic experiments.  相似文献   

10.
A new cytectrene prototype of general formula RCpTc(CO)3 (R = C6H5NHCO, Cp = cyclopentadienyl moiety) has been synthesized from N‐phenylferrocenecarboxamide 2 , characterized and evaluated as a potential brain perfusion imaging agent. An improved procedure has been developed to obtain both the ligand 2 , characterized by its solid‐state structure (orthorhombic, Pccn, a = 10.4443(2) Å, b = 26.1467(6) Å, c = 9.9977(3) Å), and the corresponding metallic Tc‐ and Re‐complexes in good yield. These latter complexes possessed similar HPLC retention times, thereby indicating identity of their molecular structures. The Tc‐complex 99m Tc‐2 is lipophilic enough to cross the blood‐brain barrier. This complex exhibits good brain uptake (1.41% injected dose per gram tissue at 5 min) combined with a fairly good retention of radioactivity in brain (0.48% injected dose per gram tissue after 1 h). Then, the distribution of the activity at 5 min post‐injection in various rat brain regions showed a higher accumulation in the hippocampus area. The new 99mTc‐cyclopentadienyltricarbonyl technetium complex reported here showed promising biological results, making it an interesting base for the development of a new generation of cytectrene as brain perfusion imaging agent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Isocyanide is a strong coordination ligand that can coordinate with [99mTc(I)(CO)3]+ core and [99mTc(I)]+ core to produce stable 99mTc complexes, therefore developing a 99mTc-labeled isocyanide complex for single-photon emission computed tomography (SPECT) imaging is considered to be of great interest. In order to develop potential tumor imaging agents with satisfied tumor uptake and suitable pharmacokinetic properties in vivo, a novel d -glucosamine isocyanide derivative, 4-isocyano-N-(2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)butanamide (CN3DG), was synthesized and radiolabeled with [99mTc(I)]+ and [99mTc(CO)3]+ cores to obtain [99mTc(CN3DG)6]+ and [99mTc(CO)3(CN3DG)3]+ in high radiolabeling yields (>95%). Both of the complexes showed good hydrophilicity and great stability in vitro. Cell uptake studies performed in S180 cells demonstrated they were transported into cells by glucose transporters. Biodistribution studies of the two complexes in mice bearing S180 tumor showed they had high tumor uptakes and rapid clearance from muscle and blood so that the tumor/blood and tumor/muscle ratios were high. By comparison, [99mTc(CN3DG)6]+ was superior to [99mTc(CO)3(CN3DG)3]+ in regard to tumor uptake, tumor/blood and tumor/liver ratios. S180 tumors could be seen clearly from the SPECT/CT images with [99mTc(CN3DG)6]+. Considering its favorable properties, [99mTc(CN3DG)6]+ would be a promising tumor imaging agent and needs to be further studied.  相似文献   

12.
Dirk Rattat 《Tetrahedron letters》2006,47(27):4641-4645
Derivatives of ethylenediamine-N-acetic acid (EDAA = N-aminoethylglycine = AEG) and ortho-phenylenediamine-N-acetic acid (PDAA) with uncharged substituents on one or both of the amines form neutral complexes with a [99mTc(CO)3]+-moiety. We studied the influence of different modifications at the amines (e.g., with methyl, ethyl, butyl or benzyl groups) on the behaviour of the 99mTc(CO)3-complexes in vivo in mice, with special focus on blood-brain barrier (BBB) passage. The complexes have been characterised by reversed phase HPLC, log P, electrophoresis and some of them also by LC-MS. Log P values of the 99mTc-tricarbonyl complexes varied from −0.52 (AEG) to 2.5 (N,N′-dibenzyl-EDAA). With increasing lipophilicity, more of the activity was found in liver and intestines as compared to kidneys and urine for the more polar complexes. Brain uptake was found for the 99mTc(CO)3-complexes with N,N′-dibutyl-ethylenediamine-N-acetic acid (0.34% of I.D. after 2 min) and ortho-phenylenediamine-N-acetic acid (0.22% of I.D. after 2 min).  相似文献   

13.
Acetato-bis(pyrazole) complexes [Mo(η3-methallyl)(O2CMe)(CO)2(pzH)2], (methallyl = CH2C(CH3)CH2) and fac-[M(O2CMe)(CO)3(pzH)2], (pzH = pyrazole or 3,5-dimethylpyrazole, dmpzH; M = Mn, Re) are obtained from [Mo(η3-methallyl)Cl(CO)2(NCMe)2] or fac-[MBr(CO)3(NCMe)2] [M = Mn (synthesized in situ), Re], 2 equiv. of pyrazole, and 1 equiv. of sodium acetate for Mo complexes, or silver acetate for Mn or Re complexes. The chlorido-complexes [Mo(η3-methallyl)Cl(CO)2L2] (L = pzH, dmpzH), obtained from the same starting material by substitution of MeCN by pzH or dmpzH, are also described. The crystal structures of the fac-acetato-bis(dimethylpyrazole) complexes present the same pattern of intramolecular hydrogen bonds between the acetate and the dimetylpyrazole ligands, whereas the crystal structures of the fac-acetato-bis(pyrazole) complexes show different hydrogen bonds patterns, with intermolecular interactions. NMR data indicate that these interactions are not maintained in solution.  相似文献   

14.
The new pyrazole-containing ligand 3,5-Me2pz(CH2)2S(CH2)2COOH (L1H) was synthesized and used to prepare the complexes fac-[M(κ3-L1)(CO)3] (M = Re (1), 99mTc(1a)), which were obtained in high yield albeit with a low specific activity in the case of 99mTc. The X-ray diffraction analysis of 1 confirmed that L1 coordinates to the metal as monoanionic and through a (N,S,O) donor atom set. Challenge experiments of 1a against cysteine and histidine showed that this complex suffers considerable transchelation in vitro. This contrasts with the behavior exhibited by the related complex fac-[99mTc(κ3-L2)(CO)3] (2a) (L2 = 3,5-Me2pz-(CH2)2NH-CH2-COO), anchored by a (N2O)-tridentate ligand. Biodistribution studies of 1a and 2a in mice indicated that both compounds have a relatively similar biological profile. Nevertheless, the fastest blood clearance and minor hepatic retention found for 2a has shown that this complex is more adequate to be further explored in radiopharmaceutical sciences. DFT calculations (ADF program) were performed for these neutral complexes and related cationic M(I) (M = Re, Tc) tricarbonyl complexes anchored by pyrazole-containing ligands, in order to have a better understanding of the influence of the donor atom set (N,N,O vs. N,O,S; N,N,N vs. N,N,S vs. N,S,S) on their in vitro stability. The differences of the calculated binding energies are not significant, suggesting that the in vitro behavior of these Re(I)/Tc(I) tricarbonyl complexes is not determined by thermodynamic factors.  相似文献   

15.
The confirmation that N-substituted imidodiacetic acids, as small and simple ligand systems containing amines and carboxylic acids, could be coordinated to the tricarbonyl core and form inert complexes with [99mTc (CO)3(H2O)3]+, is demonstrated. The HPLC quality control results of 99mTc-carbonyl tagged IDA molecules, performed by gradient HPLC, have shown that HIDA, EHIDA and p-butyl-IDA form complexes with [99mTc(CO)3(H2O)3]+, with a labeling yield of ~90% for each of 99mTc(CO)3 IDA derivatives. However, the changes in the structure of labeled compounds, e.g., EHIDA, influence the changes in the biological behavior. In comparison with 99mTc-EHIDA, the biliary excretion of 99mTc(CO)3 EHIDA was lower, but the urinary excretion higher. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
99mTc-Sestamibi has been playing an important role in the cardiac imaging for the last decades. Previously, we reported that [99mTc(CO)3(MIBI)3]+ demonstrated a significant location in myocardium with a lower liver uptake as compared with 99mTc-Sestamibi. In this work, we found that new [99mTc(CO)2(MIBI)4]+ could be prepared with high radiochemical purity. The inter-transformations between [99mTc(CO)3(H2O)(MIBI)2]+, [99mTc(CO)3(MIBI)3]+, and [99mTc(CO)2(MIBI)4]+ were investigated and biodistribution was performed to evaluate the [99mTc(CO)2(MIBI)4]+ as a myocardial perfusion imaging agent. The results showed that one more CO was replaced by MIBI slowing down the pharmacokinetics. The structure characterization was performed on their corresponding rhenium complexes, and the results indicated that there were differences between 99mTc-CO-MIBI and Re-CO-MIBI in preparation and hydrophobic characteristics.  相似文献   

17.
[99mTc(I)]+ and [99mTc(I)(CO)3]+ complexes with isocyanide exhibit high stability, which makes them suitable platforms to develop novel 99mTc radiopharmaceuticals. To develop novel 99mTc radiotracers for imaging hypoxia, in this study, a novel L ligand (4-nitroimidazole isocyanide derivative) was synthesized and labelled using [99mTc(I)]+ core and [99mTc(I)(CO)3]+ core to produce [99mTc(L)6]+ and [99mTc(CO)3(L)3]+ with high yields. To verify the structure of the 99mTc complexes, corresponding rhenium analogues were synthesized and characterized. Both of the 99mTc complexes were stable and hydrophilic. in vitro cellular uptake results showed they could exhibit good hypoxic selectivity. The evaluation of biodistribution in mice bearing S180 tumors indicated both of them could accumulate in tumor. Between them, [99mTc(L)6]+ exhibited higher tumor uptake and tumor/non-target ratio than [99mTc(CO)3(L)3]+. Further, single photon emission computed tomography (SPECT) imaging studies of [99mTc(L)6]+ indicated an obvious accumulation in tumor and the value of the region-of-interest (ROI) ratio of the uptake for the tumor site to the corresponding non-tumor region was 5.64 ± 0.52. The above results suggested [99mTc(L)6]+ would be a potential tracer for imaging tumor hypoxia.  相似文献   

18.
Aryl M(κ1-Ar)(CO)nP5−n [M = Mn, Re; Ar = C6H5, 4-CH3C6H4; n = 2, 3; P = P(OEt)3, PPh(OEt)2, PPh2OEt] and Re(κ1-C6H5)(CO)3[Ph2PO(CH2)3OPPh2] complexes were prepared by allowing hydrides MH(CO)nP5−n to react first with triflic acid and then with the appropriate aryl lithium (LiAr) compounds. The complexes were characterized spectroscopically (IR and 1H, 31P, 13C NMR) and by the X-ray crystal structure determination of Re(κ1-C6H5)(CO)3[Ph2PO(CH2)3OPPh2] derivative. Protonation reaction of the aryl complexes with HBF4 · Et2O lead to free hydrocarbons Ar-H and the unsaturated [M(CO)nP5−n]+ cations, separated as solids in the case of [Re(CO)3P2]BF4 derivatives.  相似文献   

19.
Seven discrete sugar‐pendant diamines were complexed to the {M(CO)3}+ (99mTc/Re) core: 1,3‐diamino‐2‐propyl β‐D ‐glucopyranoside ( L 1 ), 1,3‐diamino‐2‐propyl β‐D ‐xylopyranoside ( L 2 ), 1,3‐diamino‐2‐propyl α‐D ‐mannopyranoside ( L 3 ), 1,3‐diamino‐2‐propyl α‐D ‐galactopyranoside ( L 4 ), 1,3‐diamino‐2‐propyl β‐D ‐galactopyranoside ( L 5 ), 1,3‐diamino‐2‐propyl β‐(α‐D ‐glucopyranosyl‐(1,4)‐D ‐glucopyranoside) ( L 6 ), and bis(aminomethyl)bis[(β‐D ‐glucopyranosyloxy)methyl]methane ( L 7 ). The Re complexes [Re( L 1 – L 7 )(Br)(CO)3] were characterized by 1H and 13C 1D/2D NMR spectroscopy which confirmed the pendant nature of the carbohydrate moieties in solution. Additional characterization was provided by IR spectroscopy, elemental analysis, and mass spectrometry. Two analogues, [Re( L 2 )(CO)3Br] and [Re( L 3 )(CO)3Br], were characterized in the solid state by X‐ray crystallography and represent the first reported structures of Re organometallic carbohydrate compounds. Conductivity measurements in H2O established that the complexes exist as [Re( L 1 – L 7 )(H2O)(CO)3]Br in aqueous conditions. Radiolabelling of L 1 – L 7 with [99mTc(H2O)3(CO)3]+ afforded in high yield compounds of identical character to the Re analogues. The radiolabelled compounds were determined to exhibit high in vitro stability towards ligand exchange in the presence of an excess of either cysteine or histidine over a 24 h period.  相似文献   

20.
The synthesis and structural characterization of the neutral rhenium complex fac-[Re(NSO)(CO)3], Re-1, where (NSO) is a tridentate bifunctional chelating agent, 3-(carboxymethylthio)-3-(1H-imidazol-4-yl)propanoic acid (1), is presented. The complex crystallized from methanol–water and its structure was assigned by IR and 1H, 13C NMR spectroscopies and X-ray crystallography. Furthermore, the analogous technetium complex fac-[99mTc(NSO)(CO)3], 99mTc-1, was synthesized in high yield by reacting ligand 1 with the fac-[99mTc(OH2)3(CO)3]+ precursor for 30 min at 85 °C. The tracer complex was found to be more than 95% stable in the L-histidine challenge experiment. Our data indicate that the bifunctional NSO chelating agent 1 can be successfully applied for the development of potential 99mTc-radiopharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号