首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
Reaction of N-bromohexamethyl disilazane (Me3Si)2NBr with substituted triorganyl silanes R1R2R3SiH results in asymmetric disilazanes Me3SiNHSiR1R2R3 and bromination product, bromotrimethyl silane Me3SiBr. The reaction has demonstrated an unusual dependence on specific solvation. In benzene, bromination occurs immediately after mixing of the reagents, while in cyclohexane, the reaction products are formed only under UV-irradiation. Application of photoinduced CIDNP method has shown that the mechanism of bromination of triorganyl silanes is comprised of a series of consecutive radical stages involving N-centered disilazanyl (Me3Si)2N and Si-centered silyl R1R2R3Si radicals.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Peroxynitrous acid (ONOOH) was produced by the on-line mixing of acidified hydrogen peroxide with nitrite in a flow system. A strong chemiluminescent (CL) emission was observed when ONOOH reacted with carbonate without any special CL reagents. When cotton was present in the CL cell, the CL emission was enhanced significantly. The method was developed to determine nitrite, which showed a key improvement that any CL reagents and sensitizers were not used, resulting in better selectivity. The applicability of the present CL system was demonstrated for the sensitive and selective determination of nitrite in natural water samples without any special pretreatment. Good agreements were obtained for the determination of nitrite in tap and well waters between the present approach and a standard spectrophotometric method. The average precision was 4.6% (n=7) and detection limit (S/N=3) was 1.0×10−7 M. Based on the CL spectrum, UV spectra, and dissolved oxygen measurement, a possible CL mechanism was proposed. ONOOH was an unstable compound in acidic solution and could be quenched into peroxynitrite (ONOO) in basic solution. ONOO reacted with CO2 to produce ONOOCO2, which can rapidly decompose into NO2 and CO3 radicals. In the presence of H+, CO3 radicals can protonate to bicarbonate radical (HCO3). The recombination of HCO3 radicals and decomposition can lead to light emission.  相似文献   

9.
The reaction of VOF3 with (C2H5)4NF, (CH3)4NCl and (C4H9)4NBr salts in anhydrous CH3CN produced new complexes with the anion general formula [VOF3X] in that (X = F, Cl, Br). These were characterized by elemental analysis, IR, UV/Visible and 19F NMR spectroscopy. The optimized geometries and frequencies of the stationary point are calculated at the B3LYP/6-311G level of theory. Theoretical results showed that the VX (X = F, Cl, Br) bond length values for the [VOF3X] in compounds 1-3 are 1.8247, 2.4031 and 2.5595 Å, respectively. Also, the VF5 bond length values in [VOF3X] are 1.824, 1.812 and 1.802 Å, respectively. These results reveal that the bond order for VX bonds decrease from compounds 1 to 3, while for VF5 bonds, the bond orders increase. It can be concluded that the decrease of VX bonds lengths and the increase of VF5 bond lengths in compounds 1-3 result from the increase of the hyperconjugation from compounds 1 to 3. Harmonic vibrational frequencies and infrared intensities for VOF4, VOF3Cl and VOF3Br are studied by means of theoretical and experimental methods. The calculated frequencies are in reasonable agreement with the experiment values. These data can be used in models of phosphoryl transfer enzymes because vanadate can often bind to phosphoryl transfer enzymes to form a trigonal-bipyramidal structure at the active site.  相似文献   

10.
The reactions of OH, H and eaq with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 4-chloro-2-methylphenoxyacetic acid (MCPA) were studied by pulse radiolysis. The site of OH-radicals addition to the aromatic ring of 2,4,5-T was found to be—C1: ∼18%, C2/C4/C5: total ∼28% and C3/C6: total ∼41%. The overall rate constants with OH-radicals were k(OH+2,4,5-T)=6.4 (±0.5)×109 mol dm−3 s−1 and k(OH+MCPA)=8.5 (±0.8)×109 mol dm−3 s−1. The radiation induced decomposition of the pesticides, chloride- and product formation (phenolic compounds, aliphatic acids) was studied by gamma radiolysis as a function of dose. A mechanism for acetate formation is discussed. The presence of oxygen during irradiation affected the decomposition rate only indiscernibly, however, chloride elimination, ring fragmentation (formation of aliphatic acids), TOC- and toxicity reduction were strongly enhanced. For complete removal of 500 μmol dm−3 herbicides a dose of ∼4 kGy was required. Using air saturation during irradiation a reduction of 37-40% of the TOC was observable at 5 kGy, detoxification (luminescence inhibition <20%) was achieved with 10 kGy.  相似文献   

11.
Kilinc E 《Talanta》2005,65(4):876-881
An HPLC-ECD method is described for the indirect determination of the hydroxyl (OH) radical. Fenton's reaction is used to produce OH, which simultaneously attacks phenols (phenol or pyrocatechol) to form the adducts, pyrocatechol or pyrogallic acid. Thus, [OH] quantification is based on the separation and detection of pyrogallic acid and/or pyrocatechol by an isocratic HPLC-ECD method. The quantification of OH is also performed alternatively by a chronoamperometric detection in an electrochemical cell, where simultaneously formed FeIII (Fenton's reaction) combines [FeII(CN)6]4− to produce the Prussian blue (PB) molecules (Fe4III[FeII(CN)6]3). Newly formed PB molecules are then immediately converted to colorless Everitts salt (K4Fe4II[FeII(CN)6]3) with the reduction of the high-spin FeIII to FeII at the surface of a glassy carbon electrode at +0.150 V (versus Ag/AgCl). The calculated concentration of OH during incubation (0.626 ppm) can be detected with negative errors by the HPLC-ECD (0.595 and 0.615 ppm with the errors −5.2 and −1.8%, respectively) and by the chronoamperometric method (0.552 and 0.607 ppm with the errors −11.8 and −3.0%, respectively). For the comparison of the two sets of data, HPLC-ECD method is much more promising.  相似文献   

12.
γ-Irradiation of 2,2-diphenyl-1-methylenecyclopropane (3) in a degassed 2-methyltetrahydrofuran glassy matrix at 77 K gave an intense UV/vis absorption band with λab at 496 nm. This result and calculations based on density functional theory for its radical anion 3 and the corresponding trimethylenemethane radical anion (2) strongly suggest that single electron reduction of 3 followed by ready ring opening affords 2, whose molecular geometry is largely twisted (θ = 45.5°), and the negative charge and spin are localized mainly in the diphenyl methyl and allyl moieties, respectively.  相似文献   

13.
In order to evaluate the chemiluminescence (CL) reagents for selective detection of reactive oxygen species (ROS), we comprehensively measured the CL responses of 20 CL reagents (three luminol derivatives, two imidazopyrazinone derivatives, eight lophine derivatives, six acridinium ester derivatives and lucigenin) against six types of ROS (superoxide anion: O2, hydroxyl radical: OH, hydrogen peroxide: H2O2, hypochlorite anion: ClO, singlet oxygen: 1O2, and nitric oxide: NO). As a result of the screening, it was found that nine CL reagents selectively detected O2 while one CL reagent selectively detected OH. However, no CL reagent had selectivity on the detection of H2O2, ClO, 1O2 and NO. Our screening results could help to select the most suitable CL reagent for selective determination of different ROS.As an application study, 4-methoxyphenyl-10-methylacridinium-9-carboxylate (MMAC), one of the acridinium ester derivatives, showed high selectivity on the detection of O2, and thus was applied to the assay of superoxide dismutase (SOD) activity. The dynamic range and detection limit of the developed CL assay were 0.1-10 and 0.06 U mL−1, respectively. Significant correlation (r = 0.997) was observed between the results by the CL assay using MMAC and the spectrophotometric assay using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt.  相似文献   

14.
15.
The determination of the optimum parameters for hydroxyl radicals (OH) formation by a TiO2 solution has been investigated by measuring the emitted fluorescence after the reaction with terephthalic acid has occurred. After UV irradiation, the terephthalic acid was transformed into 2-hydroxyterephthalic acid whose fluorescence is directly proportional to the generated OH. Optimization of hydroxyl radicals’ formation using TiO2 as catalyst was carried out by studying the effects of irradiation time, TiO2 concentration and terephthalic acid concentration on the production of the fluorescent HTA with an experimental design. The aim of our research was to apply response surface methodology as a chemometric method for the optimization of the reaction conditions. The combination of irradiation time, TiO2 concentration and terephthalic acid concentration was varied at designed points of a central composite rotatable design. The three factors were found to have a significant effect upon the reaction. The optimum conditions for the reaction achievement were estimated to be 10 min for the irradiation time, 25 μg mL−1 TiO2 concentration and 0.1 mmol L−1 terephthalic acid concentration. Afterwards, using these parameters the method was applied for the determination of the ability of several plant extract samples to scavenge the formed OH.  相似文献   

16.
The N-methylquinolinium tetrafluoroborate (NMQ+)-photosensitized oxidation of tert-alkyl phenyl sulfides 1a-c (1a, tert-alkyl=tert-butyl; 1b, tert-alkyl=2-phenyl-2-propyl; 1c, tert-alkyl=1,1-diphenylethyl) and benzyl phenyl sulfide (2) were investigated in CH3CN by nanosecond laser flash photolysis (LFP) and steady-state irradiation either under nitrogen or in the presence of O2. By laser irradiation, the formation of sulfide radical cations 1a+-c+ in the monomeric form (λmax=520 nm) and of 2+ in both the monomeric (λmax=520 nm) and dimeric form (λmax=780 nm) were observed within the laser pulse. In both cases, the radical cations decayed by second-order kinetics without any apparent formation of transients attributable to C-S bond rupture. In line with these results, very small amounts of photoproducts were obtained under nitrogen thus suggesting that the sulfide radical cations mainly undergo a back electron transfer process with the reduced N-methylquinolinium (NMQ). A different situation was found in the presence of O2 since steady-state photolysis produced substantial amounts of C-S bond cleavage products (alcohols, alkenes, and ketones from 1a-c and benzaldehyde from 2), in contrast with LFP experiments. Formation of products was, however, significantly reduced in the presence of benzoquinone, a trap for O2 generated by NMQ and O2. For the tert-alkyl phenyl sulfides, 1a-c, these results have been interpreted by suggesting that C-S bond cleavage products in the presence of oxygen mostly derive from the decomposition of a thiadioxirane 6 formed by the reaction of the sulfide radical cation with O2. In this cleavage a sulfinate and a carbocation formed. The former is oxidized to sulfonate, whereas the carbocation can react with adventitious water to form the alcohol (and the alkene therefrom) and with O2 to produce the ketone. For 2 (a sulfide with α-CH bonds) probably a different mechanism holds, benzaldehyde coming from the α-phenylthio carbon radical formed from deprotonation by O2 of 2n+.  相似文献   

17.
DFT calculations have been carried out for 2-, 3- and 4-methoxybenzyl alcohol radical cations (1+, 3+ and 4+, respectively) and the α-methyl derivatives 2+ and 5+ using the UB3LYP/6-31G(d) method. The theoretical results have been compared with the experimental rate constants for deprotonation of 1+-5+ under acidic and basic conditions. In acidic solution, the decay of 1+-5+ proceeds by cleavage of the C-H bond, while in the presence of OH all the radical cations undergo deprotonation from the α-OH group. This pH-dependent change in mechanism has been interpreted qualitatively in terms of simple frontier molecular orbital theory. The OH induced α-O-H deprotonation is consistent with a charge controlled reaction, whereas the C-H deprotonation, observed when the base is H2O, appears to be affected by frontier orbital interactions.  相似文献   

18.
The iridium dinitrogen complex [IrCl(N2)(PPh3)2] (1) was found to react with alkynylsilanes to form the vinylidene iridium(I) complexes trans- (R/R′ = Ph/Me, 2; Me/Me, 3; Bn/Me, 4; SiMe3/Me, 5; SiEt3/Et, 6; iPr/Me, 7) and with Me3SiCCC(O)R to yield the iridium η2-alkyne complexes trans-[IrCl{η2-Me3SiCCC(O)R}(PPh3)2] (R = OEt, 9; Me, 11). Complex 9 was found to isomerize upon heating or upon UV irradiation yielding the vinylidene complex trans-[IrCl{CC(SiMe3)CO2Et}(PPh3)2] (10). The reaction of 1 with Me3SiCCCCSiMe3 yielded the complex trans-[IrCl{CC(SiMe3)CCSiMe3}(PPh3)2] (8), whereas with MeO2CCCCO2Me the iridacyclopentadiene complex [Ir{C4(CO2Me)4}Cl(PPh3)2] (13) was formed. The complexes were characterized by means of 1H, 13C and 31P NMR spectroscopy as well as by IR spectroscopy and microanalysis.  相似文献   

19.
The oxidation of CF2CFBr by molecular O2, initiated by CF3OF, has been studied at 273, 253.5, 239 and 218 K. The initial pressure of CF3OF was varied between 0.9 and 2.4 Torr, that of CF2CFBr between 11.5 and 30.7 Torr and that of O2 between 42.5 and 100.7 Torr. The main product was CF2BrC(O)F (yields 81-95% based on the CF2CFBr consumed). Minor amounts of C(O)F2 and C(O)FBr and traces of bromotrifluoroethene epoxide were also formed. The reaction is a chain reaction with bromine atoms as chain carriers. Its basic steps are: the thermal generation of CF3O radical by abstraction of fluorine atom from CF3OF, chain initiation by addition of CF3O to the double bond of alkene, leading, in presence of O2, to the formation of bromine atom and chain propagation by the reaction of bromine atom with CF2CFBr, originating CF2BrCFBrO radical. The predominant fate of the latter is the bromine atom extrusion with CC bond scission playing the minor role. The full mechanism is postulated.  相似文献   

20.
Photoformation rates and scavenging rate constants of hydroxyl radicals (OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between OH and the benzene added to the water sample was determined to quantify the OH formation rate. The rate constants of OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 × 10−13 M s−1 and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of OH in commercial drinking water and the major source and sink of OH were identified as nitrate and bicarbonate ions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号