首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The ability to control the charge state and ionization efficiency of lipids and hydrocarbons by means of in-source Paternò-Büchi functionalization in nano-electrospray ionization mass spectrometry experiments is investigated. Ultraviolet light irradiation of acetylpyridine filled nano-electrospray emitter tips, containing unsaturated analytes, generates protonated lipid and hydrocarbon ions. Comparison of reaction yields and fragment ion abundances of functionalized unsaturated fatty acids indicate that acetylpyridine Paternò-Büchi functionalization allows to readily detect fatty acids and determine double bond positions, but fragmentation efficiency and reactivity depend on double bond position and varies between different acetylpyridine isomers. Results for methyl oleate and olefins suggest that fragment ion abundances of unsaturated compounds depend on interactions between acetylpyridine and nearby functional groups. Paternò-Büchi functionalization with acetylpyridine was used to detect and assign double bond positions of mono- and polyunsaturated fatty acid, cholesterol ester, triglyceride, and hydrocarbon standards with ion abundances that are up to 631 times higher than abundances of the same compounds prior Paternò-Büchi reaction. To demonstrate the scope and analytical robustness of the newly developed method, free fatty acids in mouse brain as well as male Schistosoma mansoni extracts and hydrocarbons in an olefin mixture are investigated. For this complex set of analytes, charging and charge switching using acetylpyridine Paternò-Büchi functionalization enable double bond position assignment and relative quantification in positive ion mode.
Graphical Abstract
  相似文献   

2.
High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides.
Graphical Abstract ?
  相似文献   

3.
Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%–100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.
Graphical Abstract ?
  相似文献   

4.
Reaction products from the ozonolysis of unsaturated lipids at gas–liquid interfaces have the potential to significantly influence the chemical and physical properties of organic aerosols in the atmosphere. In this study, the gas-phase dissociation behavior of lipid secondary ozonides is investigated using ion-trap mass spectrometry. Secondary ozonides were formed by reaction between a thin film of unsaturated lipids (fatty acid methyl esters or phospholipids) with ozone before being transferred to the gas phase as [M + Na]+ ions by electrospray ionization. Activation of the ionized ozonides was performed by either energetic collisions with helium buffer-gas or laser photolysis, with both processes yielding similar product distributions. Products arising from the decomposition of the ozonides were characterized by their mass-to-charge ratio and subsequent ion-molecule reactions. Product assignments were rationalized as arising from initial homolysis of the ozonide oxygen–oxygen bond with subsequent decomposition of the nascent biradical intermediate. In addition to classic aldehyde and carbonyl oxide-type fragments, carbon-centered radicals were identified with a number of decomposition pathways that indicated facile unimolecular radical migration. These findings reveal that photoactivation of secondary ozonides formed by the reaction of aerosol-bound lipids with tropospheric ozone may initiate radical-mediated chemistry within the particle resulting in surface modification.
Graphical Abstract ?
  相似文献   

5.
Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions.
Graphical Abstract ?
  相似文献   

6.
Immonium ions are commonly observed in the high energy fragmentation of peptide ions. In a MALDI-TOF/TOF mass spectrometer, singly charged peptides photofragmented with 157 nm VUV light yield a copious abundance of immonium ions, especially those from aromatic residues. However, their intensities may vary from one peptide to another. In this work, the effect of varying amino acid position, peptide length, and peptide composition on immonium ion yield is investigated. Internal immonium ions are found to have the strongest intensity, whereas immonium ions arising from C-terminal residues are the weakest. Peptide length and competition among residues also strongly influence the immonium ion production. Quantum calculations provide insights about immonium ion structures and the fragment ion conformations that promote or inhibit immonium ion formation.
Graphical Abstract ?
  相似文献   

7.
Hydroxyphthioceranoic (HPA) and phthioceranoic (PA) acids are polymethylated long chain fatty acids with and without a hydroxyl group attached to the carbon next to the terminal methyl-branched carbon distal to the carboxylic end of the long-chain fatty acid, respectively. They are the major components of the sulfolipids found in the cell wall of Mycobacterium tuberculosis (M. tuberculosis) strain H37Rv. In this report, I describe CID linear ion-trap MSn mass spectrometric approaches combined with charge-reverse derivatization strategy toward characterization of these complex lipids, which were released from sulfolipids by alkaline hydrolysis and sequentially derivatized to the N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives. This method affords complete characterization of HPA and PA, including the location of the hydroxyl group and the multiple methyl side chains. The study also led to the notion that the hydroxyphthioceranoic acid in sulfolipid consists of two (for hC24) to 12 (for hC52) methyl branches, and among them 2,4,6,8,10,12,14,16-octamethyl-17-hydroxydotriacontanoic acid (hC40) is the most prominent, while phthioceranoic acids are the minor constituents. These results confirm our previous findings that sulfolipid II, a family of homologous 2-stearoyl(palmitoyl)-3,6,6′-tris(hydroxyphthioceranoy1)-trehalose 2′-sulfates is the predominant species, and sulfolipid I, a family of homologous 2-stearoyl(palmitoyl)-3-phthioceranoyl-6,6′-bis(hydroxyphthioceranoy1)-trehalose 2′-sulfates is the minor species in the cell wall of M. tuberculosis.
Graphical Abstract ?
  相似文献   

8.
Phospholipids generally dominate in bacterial lipids. The negatively charged nature of phospholipids renders bacteria susceptible to cationic antibiotic peptides. In comparison with Gram-negative bacteria, Gram-positive bacteria in general have much less zwitterionic phosphatidylethanolamine. However, they are known for producing aminoacylated phosphatidylglycerol (PG), especially positively charged l-lysyl-PG, which is catalyzed by lysyl-PG synthase MprF, which appears to have a broad range of specificity for l-aminoacyl transfer RNAs. In addition, many Gram-positive bacteria also have a dlt-gene-coded d-alanylation pathway for lipoteichoic acids and wall teichoic acids covalently attached to a glycolipid or peptidoglycan. d-Alanylation also masks the dominant negative charge of the phosphate-rich polymers of teichoic acids. Using mass spectrometry, we have recently observed that precursor scans in negative mode for deprotonated amino acid fragments were most sensitive for ester-linked amino acids. Such a scan for precursors generating an m/z 145 lysyl anion revealed lysyl-PG as well as an additional species 100?m/z units greater than lysyl-PG. This unexpected species corresponded precisely to the expected mass of N-succinylated lysyl-PG. Tandem mass spectrometry revealed a precise match to the fragmentation pattern of this putative new species. PG, lysyl-PG, and N-succinyl-lysyl-PG may form a complete loop of charge reversal from -1 to +1 and then back to -1. Analogous charge reversal by N-succinylation of lysine residues in the bacterial as well as eukaryotic proteomes has been recently discovered as a major posttranslational modification. Such modification in bacterial lipids is possibly catalyzed by an enzyme homologous to the enzymes that modify lysine residues in proteins.
Graphical Abstract ?
  相似文献   

9.
Glycosphingolipids are essential biomolecules widely distributed across biological kingdoms yet remain relatively underexplored owing to both compositional and structural complexity. While the glycan head group has been the subject of most studies, there is paucity of reports on the lipid moiety, particularly the location of unsaturation. In this paper, ozone-induced dissociation mass spectrometry (OzID-MS) implemented in a traveling wave-based quadrupole time-of-flight (Q-ToF) mass spectrometer was applied to study unsaturated glycosphingolipids using shotgun approach. Resulting high resolution mass spectra facilitated the unambiguous identification of diagnostic OzID product ions. Using [M+Na]+ adducts of authentic standards, we observed that the long chain base and fatty acyl unsaturation had distinct reactivity with ozone. The reactivity of unsaturation in the fatty acyl chain was about 8-fold higher than that in the long chain base, which enables their straightforward differentiation. Influence of the head group, fatty acyl hydroxylation, and length of fatty acyl chain on the oxidative cleavage of double bonds was also observed. Application of this technique to bovine brain galactocerebrosides revealed co-isolated isobaric and regioisomeric species, which otherwise would be incompletely identified using contemporary collision-induced dissociation (CID) alone. These results highlight the potential of OzID-MS in glycosphingolipids research, which not only provides complementary structural information to existing CID technique but also facilitates de novo structural determination of these complex biomolecules.
Graphical Abstract ?
  相似文献   

10.
Deamidation is a major fragmentation channel upon activation by collision induced dissociation (CID) for protonated peptides containing glutamine (Gln) and asparagine (Asn) residues. Here, we investigate these NH3-loss reactions for four Asn- and Gln-containing protonated peptides in terms of the resulting product ion structures using infrared ion spectroscopy with the free electron laser FELIX. The influence of the side chain length (Asn versus Gln) and of the amino acid sequence on the deamidation reaction has been examined. Molecular structures for the product ions are determined by comparison of experimental IR spectra with spectra predicted by density functional theory (DFT). The reaction mechanisms identified for the four dipeptides AlaAsn, AsnAla, AlaGln, and GlnAla are not the same. For all four dipeptides, primary deamidation takes place from the amide side chain (and not from the N-terminus) and, in most cases, resembles the mechanisms previously identified for the protonated amino acids asparagine and glutamine. Secondary fragmentation reactions of the deamidation products have also been characterized and provide further insight in – and confirmation of – the identified mechanisms. Overall, this study provides a comprehensive molecular structure map of the deamidation chemistry of this series of dipeptides.
Graphical Abstract ?
  相似文献   

11.
A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.
Graphical Abstract ?
  相似文献   

12.
The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies.
Graphical Abstract ?
  相似文献   

13.
The rising profile of ion mobility spectrometry (IMS) in proteomics has driven the efforts to predict peptide cross-sections. In the simplest approach, these are derived by adding the contributions of all amino acid residues and post-translational modifications (PTMs) defined by their intrinsic size parameters (ISPs). We show that the ISPs for PTMs can be calculated from properties of constituent atoms, and introduce the “impact scores” that govern the shift of cross-sections from the central mass-dependent trend for unmodified peptides. The ISPs and scores tabulated for 100 more common PTMs enable predicting the domains for modified peptides in the IMS/MS space that would guide subproteome investigations.
Graphical Abstract ?
  相似文献   

14.
The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M – H]+, and [M – H – NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein.
Graphical Abstract ?
  相似文献   

15.
Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y–46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c?+57 and z–57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.
Graphical Abstract ?
  相似文献   

16.
Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion–molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion–molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.
Graphical Abstract ?
  相似文献   

17.
Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705–1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the “pipecolic acid effect,” to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to “proline effect”-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.
Graphical Abstract ?
  相似文献   

18.
Hydrogen deuterium exchange (HDX) coupled to mass spectrometry (MS) is a well-established technique employed in the field of structural MS to probe the solvent accessibility, dynamics and hydrogen bonding of backbone amides in proteins. By contrast, fast photochemical oxidation of proteins (FPOP) uses hydroxyl radicals, liberated from the photolysis of hydrogen peroxide, to covalently label solvent accessible amino acid side chains on the microsecond-millisecond timescale. Here, we use these two techniques to study the structural and dynamical differences between the protein β2-microglobulin (β2m) and its amyloidogenic truncation variant, ΔN6. We show that HDX and FPOP highlight structural/dynamical differences in regions of the proteins, localised to the region surrounding the N-terminal truncation. Further, we demonstrate that, with carefully optimised LC-MS conditions, FPOP data can probe solvent accessibility at the sub-amino acid level, and that these data can be interpreted meaningfully to gain more detailed understanding of the local environment and orientation of the side chains in protein structures.
Graphical Abstract ?
  相似文献   

19.
In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels–Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs’ identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode.
Graphical Abstract ?
  相似文献   

20.
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein’s function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号