首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
The slow flow of a multicomponent electrolyte solution in a narrow pore of a nanofiltration membrane is considered. The well-known semiempirical method of subdivision of electrical potential into quasi-equilibrium and streaming parts and the definition of streaming concentrations and pressure are discussed. The usefulness of this tool for solving the electrohydrodynamic equations is shown and justified: the use of a small parameter enables a system of electrohydrodynamic partial differential equations to be reduced to a system of ordinary differential equations for streaming functions. Boundary conditions for streaming functions at both the capillary inlet and outlet are derived. The proposed model is developed for the flow of a multicomponent electrolyte solution with an arbitrary number of ions. This is coupled with (i) the introduction of specific interactions between all ions and the pore wall and (ii) the inclusion of the dissociation of water in both conservation and transport equations. Effective distribution coefficients of ions are introduced that are functions of both the specific interaction potentials and the surface potential of the nanofiltration membrane material. The axial dependency of surface potential is expressed by the use of a charge regulation model from which the discontinuity in electric potential and ion pore concentrations at the pore inlet and outlet can be described.A relation between the frequently used capillary and homogeneous models of nanofiltration membranes is developed. An example of application of the homogeneous model for interpretation of experimental data on nanofiltration separation of electrolyte solutions is presented, which shows a reasonable predictive ability for the homogeneous model.  相似文献   

2.
Electroosmosis experiments through a cation-exchange membrane have been performed using NaCl solutions in different experimental situations. The influence of an alternating (ac) sinusoidal perturbation, of known angular frequency and small amplitude, superimposed to the usual applied continuous (dc) signal on the electroosmotic flow has been studied. The experimental results show that the presence of the ac perturbation affects the electroosmotic flow value, depending on the frequency of the ac signal and on the solution stirring conditions. In the frequency range studied, two regions have been observed where the electroosmotic flow reaches a maximum value: one at low frequencies (Hz); and another at frequencies of the order of kHz. These regions could be related to membrane relaxation phenomena.  相似文献   

3.
The triple-layer model is one of the most widely used surface complexation models for adsorption on mineral surfaces. In current implementations, the accounting of ions in the diffuse layer may be neglected, resulting in a charge imbalance in the modeled solution as well as errors in mass balance, particularly in low ionic strength solutions when mineral-specific surface area is large. This paper introduces an internally consistent scheme for modeling diffuse layer ions in the triple-layer model. Model calculations illustrate the difference between the proposed and previous implementations using an idealized example. The guarantee of charge balance on both sides of the interface assures that pH is accurately modeled. This may be important in reactive transport simulations, such as modeling adsorption in low ionic strength variable charge soil solutions.  相似文献   

4.
A new concept of liquid entry pressure measurements is applied to study the hydrophobicity of microporous membranes for aqueous alcohol solutions. The effects of alcohol concentration, type of alcohol, and temperature on liquid entry pressure of the membrane have been studied. Two theoretical equations for the determination of membrane pore size have been proposed. The former equation was developed taking into account the deviation from the Laplace–Young equation due to the membrane structure by means of the structure angle. The latter equation was established considering only the range of alcohol concentration in which the dispersion component of liquid surface tension remains practically constant. Hydrophobicity has been expressed in terms of wetting surface tension, γLw. Based on these measurements, the maximum concentration before the spontaneous wetting occurs would be predicted.  相似文献   

5.
Rheology and Permeability of Crosslinked Polyacrylamide Gel   总被引:1,自引:0,他引:1  
Gels produced by crosslinking polyacrylamide solutions with chromium (III) have been characterized by dynamic rheology studies. To vary the gel strength, different polymer concentrations were used, while keeping the temperature, salinity, and crosslinker concentration constant. Both the loss and storage moduli increased with the polymer concentration for this gel system. The storage modulus at the end of the gelation was used to characterize the gel strength. Steady-state water flow experiments through gel-filled capillary tubes were performed, with the aim of linking the gel strength and flow behavior. The permeability was found to be a function of the water flow rate (velocity) and polymer concentration. Two parameters were used to characterize the flow behavior, intrinsic gel permeability and elasticity index, which are each functions of the polymer concentration. However, only one parameter is needed to fully identify the flow and rheological gel properties, as the elasticity index and storage modulus are linked by a power-law relationship. The loss modulus and intrinsic permeability are correlated with the storage modulus and elasticity index, respectively. A theoretical model for this behavior linking both gel properties based on the dual domain structure was used to demonstrate that the flow and rheological behavior of the gel are indeed related and that the gel strength controls the water permeability. Implications for prediction of flow of water through gels emplaced in a porous medium are discussed.  相似文献   

6.
The exchange of the original cation present on a Laponite clay (usually Na+) for heavy atoms such as Rb+, Cs+, and Tl+ significantly alters the emission characteristics of some aromatic hydrocarbons (p-terphenyl, naphthalene, pyrene, and biphenyl). The increase of the atomic mass of the cation induces a decrease of the fluorescence emission simultaneous with an increase of the emission in the region of lower energies of the spectra, ascribed to the phosphorescence of those hydrocarbons. Time-resolved experiments for the pyrene–clay system showed a decrease of singlet lifetimes for the heavier atoms. Hydrocarbon aggregates were also detected from both the emission spectra and the time-resolved studies. The “excimer-like” emission showed longer lifetimes (10–25 ns) than the monomolecular hydrocarbons (1–3 ns), as already found for other similar systems. The amount of aggregates increased for the heavier cations due to the smaller surface available on the clay particles. Experiments increasing the amount of Tl+ in samples containing a constant concentration of naphthalene allowed evaluation of the distance between the heavy atoms and the probe on the clay surface. The Perrin model treatment was used and resulted in approximately R0=9.2 Å.  相似文献   

7.
Alternating adsorption of multivalent ions and oppositely charged polyelectrolytes on colloid particles has been investigated. Multilayer films composed of Tb3+/polysterene sulfonate (PSS) and 4-pyrene sulfate/polyallylamine (PAH) were successfully assembled on polysterene sulfonate (PS) and melamine formaldehyde (MF) latex particles. The amount of assembled material was estimated by fluorescence and the linear growth of the film versus the number of layers was demonstrated. These multilayers are not stable and can be decomposed by salt and temperature. Dissolution of MF particles leads to formation of hollow capsules consisting of multivalent ion/polyelectrolyte multilayers. Comparative analysis of the capsules was done by confocal and scanning force microscopy. Complex hollow spheres consisting of Tb3+/PSS or 4-PS/PAH as an inner shell and stable PSS/PAH as an outer shell were produced. Due to selective permeability of the outer shell after degradation of the inner shell the multivalent ions are released out of the capsule while the polyelectrolytes fill the capsule interior. This is indicative of swelling of the capsule by osmotic pressure. The filled capsules were studied by confocal and scanning electron microscopy. Possibilities of encapsulating macromolecules in defined amounts per capsule are discussed.  相似文献   

8.
Effect of structural stress on the intercalation rate of kaolinite   总被引:6,自引:0,他引:6  
Particle size in kaolinite intercalation showed an inverse reactivity trend compared with most chemical reactions: finer particles had lower reactivity and some of the fine particles cannot be intercalated. Although this phenomenon was noted in the early 1960s and several hypotheses have been reported, there is no widely accepted theory about the unusual particle size response in the intercalation. We propose that structural stress is a controlling factor in the intercalation and the stress contributes to the higher reactivity of the coarser particles. In this study, we checked the structural deformation spectroscopically and indirectly proved the structural stress hypothesis. A Georgia kaolinite was separated into nine size fractions and their intercalations by hydrazine monohydrate and potassium acetate were investigated with X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses. The apical Si-O band of kaolinite at 1115 cm(-1) shifted to 1124 cm(-1) when the mineral was intercalated to 1.03 nm by hydrazine monohydrate, and its strong pleochroic properties became much weaker. Similar reduction in pleochroism was observed on the surface OH bands of kaolinite after intercalation. Both the bending vibrations of the inner OH group at 914 cm(-1) and of the surface OH group at 937 cm(-1) shifted to 903 cm(-1) after intercalation by hydrazine. A new band for the inner OH group appeared at 3611 cm(-1) during the deintercalation of the 1.03 nm hydrazine kaolinite complex. Pleochroism change in the apical Si-O band suggested the tetrahedra had increased tilt with respect to the (001) plane. The tilt of the Si-O apical bond could occur only if the octahedra had also undergone structural rearrangement during intercalation. These changes in the octahedral and tetrahedral sheets represent some change in the manner of compensation for the structural misfit of the tetrahedral sheet and octahedral sheet. As the lateral dimensions of a kaolinite particle increases, the cumulative degree of misfit increases. Intercalation breaks the hydrogen bonds between layers and allows for the structure to reduce the accumulated stress in some other manner. The reversed size effect on intercalation probably was not caused by crystallinity differences as reported in the literature, because the Hinckley and Lietard crystallinity indices of the four clay fractions were very close to each other. Impurities, such as dickite- or nacrite-like phases are not significant in the studied sample as suggested by the XRD and IR results, they are not the main reasons for the lower reactivity of the finer particles.  相似文献   

9.
The present study demonstrates the instability of streaming in a fluid layer sandwiched between two other bounded fluids under the influence of a vertical periodic electric field. The fluids are of a viscoelastic nature where the constitutive equation is Kelvin type. Due to the inclusion of streaming flow and the influence of a periodic force, a mathematical simplification is urged. Equation of motion is solved in light of the weakness effect for the viscoelastic properties. The instabilization of the problem is examined in view of the linearization of the perturbation approach. The boundary value problem is discussed for a charged or uncharged fluid sheet. Both cases are lead to derive linear coupled Mathieu equations with complex coefficients and damping terms. Stability analysis is discussed through a simplified configuration for the system of Mathieu equations. It is found that the elasticity parameters as well as the viscosity parameters have a stabilizing influence. The field frequency plays a destabilizing role in the presence of surface charges and a dual role in the absence of surface charges. The presence of surface charges retards the stabilizing influence of the viscoelastic effects. This calculation shows that the fluid velocity retards the destabilizing influence for the electric field. The increase of the thickness of the fluid sheet plays two different roles. A stabilizing role in the presence of surface charges and a destabilizing influence in their absence.  相似文献   

10.
The effect of a weak convective heat transfer on the thermocapillary interaction of two bubbles with an arbitrary orientation relative to an externally imposed temperature gradient is examined. Asymptotic analysis of the case of large separation distances, Z, suggests that the corrections to the bubbles' velocities are of (Pe/Z2), rather than (Pe2) previously found for an isolated bubble. Equal-sized bubbles are known to move with the same velocities, as if they were isolated, when heat conduction is the only transport mechanism. However, the convective transport results in a relative motion of the bubbles. The tendency of equal bubbles to line up in a plane perpendicular to the applied thermal gradient is shown analytically in the weakly nonlinear limit of small Pe numbers, and an interesting interaction behavior in the case of unequal bubbles is discussed.  相似文献   

11.
Clay liners are charged membranes and show semipermeable behavior regarding the flow of fluids, electrical charge, chemicals and heat. At zero gradients of temperature and hydrostatic pressure, a salt concentration gradient across a compacted clay sample induces not only an osmotic flux of water and diffusion of salt across the membrane but also an electrical potential gradient, defined as membrane potential. Laboratory experiments were performed on commercially available bentonite samples in a rigid-wall permeameter connected to two electrically insulated fluid reservoirs filled with NaCl solutions of different concentrations and equipped with Ag/AgCl electrodes to measure the electrical potential gradient. The effect of membrane potential could be cancelled out by short-circuiting the clay with the so-called virtual shortcut. The potential gradient across the sample is brought to zero with a negative feedback circuit. It was observed that the water flux and the diffusion of Cl- were hindered by the occurrence of a membrane potential, indicating that an electroosmotic counterflow is induced. Flow parameters were calculated with modified coupled flow equations of irreversible thermodynamics. They were in excellent agreement with values reported in the literature. Comparing the method of short-circuiting with a study elsewhere, where the electrodes were physically short-circuited, it was shown that the virtual shortcut is more appropriate because physically short-circuiting induces additional effects that are attributed to the fluxes.  相似文献   

12.
Two different composite collodion membranes were prepared to examine the correlation of material transport to membrane charges or membrane structure from comparative study. One is a composite collodion membrane incorporating only perfluorobenzoic acid (PFBA) and the other is the same membrane but with pores formed by adding NaClO4. The membrane parameters defined by irreversible thermodynamic consideration such as filtration coefficient of water, salt permeability and reflection coefficient were estimated. The differences between two membranes or the dependence of membrane transports on salt species were discussed on the basis of the frictional coefficients between water-membrane skeleton or salt-water interactions.  相似文献   

13.
Phosphotungstic acid (PW12) and 1,10-diaminodecane (1,10-DAD) molecules have been alternatively assembled on 3-aminopropyltriethyoxysilane modified quartz or silicon substrate to form multicomposite mutilayer thin films by the molecular deposition technique. Thus-obtained films were characterized by UV-visible, XRD, X-ray reflection (XRR), and XPS spectra. Results show that the layer-by-layer self-assembly of PW12 and 1,10-DAD leads to a well-ordered superlattice-layered structure with a d-spacing of 3.19 nm, which exhibits extremely exciting photochromic properties. Based on the experimental data, a presumable interlayer structural model has also been suggested.  相似文献   

14.
The quantitative analysis examining the functional group distribution of a dispersant polymer for magnetic paints is conducted by statistical estimation and adsorption experiments. The dispersant polymer contains averagely one or two functional groups on the chain, and has generally large polydispersity. By the calculation based on the random distribution of the functional group and the molecular weight, a typical design of the dispersant polymer is found to contain a significant amount of nonfunctionalized chains and highly functionalized ones. In adsorption experiments, the adsorbed amount of the polymer mass and the functional group are separately measured to determine the functional group distribution. The distribution is also evaluated by a sequential adsorption experiment, in which the chains are fractionated by the adsorption strength. Obtained experimental results agree with the calculated results. A practical method for increasing the effective chains in the paint is to make use of a preferential adsorption of the functionalized chain.  相似文献   

15.
The objective of this study was to investigate the significance of inner and outer phase pressure, as well as interfacial film strength on W/O/W multiple emulsion stability using microscopy and long-term stability tests. It was observed that immediately upon applying a coverslip to samples the multiple droplets deformed and there was coalescence of the inner aqueous droplets. Under certain conditions (such as lipophilic surfactant concentration and internal phase osmotic pressure) the destabilized multiple emulsions formed unique metastable structures that had a "dimpled" appearance. The formation of these metastable structures correlated with the real-time instability of the W/O/W multiple emulsions investigated. Multiple emulsion stability also correlated with the interfacial film strength (measured by interfacial elasticity) of the hydrophobic surfactant at the mineral oil/external continuous aqueous phase interface. The formation of the metastable dimpled structures and the long-term stability of the multiple emulsions were dependent on the osmotic pressure of the inner droplets and the Laplace curvature pressure as described by the Walstra Equation (P. Walstra, "Encyclopedia of Emulsion Technology" (P. Becher, Ed.), Vol. 4. Dekker, New York, 1996). It appears that the effect of coverslip pressure on multiple emulsions may be useful as an accelerated stability testing method or for initial formulation screening.  相似文献   

16.
The interaction of iron III salts and cetylpyridinium chloride (CPC) has been studied at the air/water and silica/water interfaces. The surface tension of cetylpyridinium chloride has been determined in aqueous solutions in the presence of iron III chloride and iron III nitrate at two constant pH values, namely, 3.5 and 1.2. It is shown that the surface tension of the cationic surfactant depends upon the ionic strength of the solution through the pH adjustment in the presence of the former salt but not in the presence of the latter. The effect of iron III nitrate on the surface tension of CPC is similar to that of potassium nitrate, indicating that the iron III various-hydrolyzed species do not interfere with the composition of the air/water interface. The competitive adsorption of iron III nitrate salt and the cationic surfactant at a silica/water interface was next investigated. The adsorption isotherms were determined at pH 3.5. It is shown that although the iron III ions, which were added to the silica dispersion in the presence of the cetylpyridinium ions, were strongly bound to the anionic surface sites, the surfactant ions are not salted out in the solution but remain in close vicinity of the silica surface. Conversely as the cationic surfactant is added first to the silica dispersion in the presence of the adsorbed iron III ions, the metal ions and the surfactant ions are both coadsorbed onto the silica surface. It is suggested that iron III hydrolyzed or free cations and the cationic surfactant molecules may not compete for the same adsorption sites onto the silica surface.  相似文献   

17.
Advective flow and floc permeability   总被引:3,自引:0,他引:3  
This work monitored advection flow through a floc by bubble tracking. Close examination of the motion of a swarm of hydrogen bubbles that passed over a free-falling floc allowed the extent of advection flow to be estimated at 53% for the original activated sludge floc, and 12% for the flocculated floc. The interior permeability of the sludge flocs was estimated from this information. The fluid force exerted on the falling floc was also considered.  相似文献   

18.
In this article, we considered the hydrodynamic interaction between two unequal spheres coated with thin deformable liquids in the asymptotic lubrication regime. This problem is a prototype model for drop coalescence through the so-called "film drainage" mechanism, in which the hydrodynamic contribution comes dominantly from the lubrication region apart from the van der Waals interaction force. First, a general formulation was derived for two unequal coated spheres that experienced a head-to-head collision at a very close proximity. The resulting set of the evolution equations for the deforming film shapes and stress distributions was solved numerically. The film shapes and hydrodynamic interaction forces were determined as functions of the separation distance, film thickness, viscosity ratios, and capillary numbers. The results show that as the two spheres approach each other, the films begin to flatten and eventually to form negative curvature (or a broad dimple) at their forehead areas in which high lubrication pressure is formed. The dimple formation occurs earlier as the capillary number increases. For large capillary numbers, the film liquids are drained out from their forehead areas and the coated liquid films rupture before the two films "touch" each other. Meanwhile, for small capillary numbers, the gap liquid is drained out first and the two liquid films eventually coalesce.  相似文献   

19.
Adsorption of amphiphilic dimers is analyzed in the framework of density functional Ono–Kondo theory. There are three configurations for dimers absorbed at a surface: one parallel to the surface and two perpendicular to the surface (AB and BA, with A or B touching the surface, respectively). Densities of molecules in each configuration are calculated from density functional theory and compared to Monte Carlo simulation data. There is good agreement between theory and simulations. It is shown that the parallel configuration is preferred over the perpendicular configuration, except when there are very strong asymmetries in intermolecular forces. In most cases, the parallel configuration is even preferred over the combination of the two perpendicular configurations.  相似文献   

20.
Mytilus edulis foot protein 1 (Mefp-1) is the most well-characterized component of this sea mussel's adhesive plaque. The plaque is a condensed, heterogeneous mixture consisting of a large proportion of cross-linked biopolymers that bonds the mussel to a chosen mooring. Mefp-1 is densely populated with lysine and -3,4-dihyroxyphenylalanine ( -dopa) residues incorporated into a repeating amino acid sequence motif. It has been proposed that one plaque cross-linking reaction is the nucleophilic addition of the ε-amino groups of the lysine residues into the oxidized catechol (o-diphenol) functionality (quinone) of the -dopa residues. In order to determine if this reaction occurs in adlayers of Mefp-1, a previously developed assay for ε-amino groups was applied. Adlayers of Mefp-1 were exposed to an oxidant, either the enzyme, mushroom tyrosinase, or sodium periodate. Binding of alginate to adlayers was used to probe for accessibility of ε-amino groups. It was found that lysine residues lose the ability to bind alginate after exposure to sodium periodate, but that this loss is not clearly due to a reaction with -dopa residues. There is a slight decrease of binding of alginate to adlayers of Mefp-1 exposed to either active or thermally deactivated mushroom tyrosinase, probably due to the obstruction of binding sites by bound enzyme. Adsorption kinetics of mushroom tyrosinase onto adlayers of Mefp-1 for active and thermally inactivated enzyme were nearly identical. Attenuated total reflection Fourier transform infrared spectroscopy was used to characterize these interactions at a germanium (Ge) interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号