首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new polyarylamines was prepared by the vinylogous nuclephilic substitution polymerization of bis(4-chloro-3-nitrophenyl) sulfone with both aromatic and aliphatic diamines. The synthesis involves the solution polycondensation in a polar aprotic solvent at elevated temperatures, a tertiary amine being used as an acid acceptor. Of these solvents, dimethyl sulfoxide and N-methyl-2-pyrrolidone were the most effective for the preparation of high molecular weight polymers. The polyarylamines having inherent viscosities in the range of 0.1–0.5 were all amorphous and highly soluble in polar aprotic solvents. Thermogravimetric analysis under both air and nitrogen atmospheres indicated that rapid decomposition began above 300°C for the polyarylamines from aromatic diamines.  相似文献   

2.
New heterocyclic polyamides have been synthesized by solution polycondensation of aromatic diamines containing phenylquinoxaline units with diacid chlorides having both imide and hexafluoroisopropylidene (6F) groups. These polymers are soluble in polar aprotic solvents, such as N-methylpyrrolidone (NMP) or N, N-dimethylformamide (DMF), and can be cast into flexible thin films from solutions. They show high thermooxidative stability with decomposition temperatures above 400°C and glass transition temperatures in the range of 225-300°C. The polymer films exhibit good chemical resistance towards diluted acids and good electrical insulating properties with dielectric constants in the range of 3.2–3.7.  相似文献   

3.
From the viewpoint of the suppression of the petroleum consumption, aromatic poly(ether ketone)s (PEKs) were prepared by the nucleophilic aromatic substitution polymerization of 2,5‐bis(4‐fluorobenzoyl)furan (BFBF) synthesized from biomass and aromatic bisphenols. The model reaction of BFBF and p‐methoxyphenol revealed that BFBF possessed enough reactivity for the nucleophilic aromatic substitution reactions. The polymerizations of BFBF and aromatic bisphenols afforded high molecular weight polymers with good yields in N‐methylpyrrolidone and diphenyl sulfone for several hours. The longer polymerization time brought about the formation of insoluble parts in any solvents and reduction of molecular weight. The obtained PEKs were thermoplastics and exhibited good thermal stability, mechanical properties, and chemical resistance comparable to common high‐performance polymers. The thermal properties were tunable with the structure of bisphenols. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3094–3101  相似文献   

4.
Polar vinyl polymers, a class of polymers with polar groups as side chains, have significant advantages over conventional nonpolar polyolefin materials in terms of viscosity, toughness, interfacial properties (dyeability and printability), and compatibility with solvents or other polymers. Among them, aromatic polar vinyl polymers are of interest because of their good heat resistance properties. In addition, stereoselective polymerization of aromatic polar vinyl monomers has been rapidly developed because the steric structure of the polymer has a significant impact on its physical properties. In this paper, we review the research progress of stereoselective polymerization catalysts for aromatic polar vinyl monomers in recent years, discuss in detail the influence of ligand structure, electronic effect of substituents, spatial site resistance effect, central rare earth metal species and polymerization solvents on the activity and stereoselectivity of polymerization reactions, and explore the possible mechanism of polymerization reaction.  相似文献   

5.
A new class of polyamide-pyrazolones was synthesized by the vinylogous nucleophilic substitution polymerization, which was followed by rearrangement, from 2,2′-p-phenylenebis(4-ethoxymethylene-5-oxazolone) and aromatic dihydrazines. Solution polymerization was carried out in polar aprotic solvents under mild conditions to yield polymers having inherent viscosities in the range of 0.5–1.2 quantitatively. The polymer derived from bis(4-hydrazinophenyl) sulfone was readily soluble in strongly polar solvents, while that from bis(4-hydrazinophenyl)methane was partially soluble or swelled in these solvents. The polyamide-pyrazolones which are presumed to contain some intermediate oxazolone structure showed a low level of thermal stability.  相似文献   

6.
A series of new poly(1,3,4-oxadiazole-amide)s containing pendent imide groups has been synthesized by solution polycondensation of aromatic diamines containing preformed 1,3,4-oxadiazole rings with two diacid chlorides containing imide rings. These polymers were also prepared by the reaction of the same diacid chlorides with p-aminobenzhydrazide which were subsequently cyclodehydrated in solid state. The polymers were soluble in polar amidic solvents and some of them gave transparent flexible films by casting from solutions. They showed high thermal stability with decomposition temperatures above 400°C and glass transition temperatures in the range of 245–327°C. They had low dielectric constants, in the range of 3.32–3.94, and good tensile properties.  相似文献   

7.
A series of new aromatic polyethers have been prepared by solution condensation polymerization. The synthesis involves the condensation of a dialkali metal salt of a dihydric phenol with an “activated” or negatively substituted aromatic dihalide in an anhydrous dipolar aprotic solvent at elevated temperatures. The reaction is rapid, free of side reactions, and yields polymers of excellent color. Bakelite polysulfone can be prepared in this manner by reaction of the disodium salt of bisphenol A with 4,4′-dichlorodiphenyl sulfone in dimethyl sulfoxide (DMSO). Only dipolar aprotic solvents are useful for conducting the polymerization. Of these, DMSO and Sulfolane (tetrahydrothiophene 1,1-dioxide) are the most effective. Water or other competing nucleophiles must be absent if high molecular weight is to be obtained. Besides providing the necessary solubility, this highly polar solvent is believed to be essential in providing the rapid polymerization rates observed. The rates are further found to depend on the basicity of the bisphenol salt and upon the electron-withdrawing power of the activating group in the dihalide. As is usual for this type of reaction, the difluorides are found to be more reactive than the corresponding dichlorides. Most of the polyethers are amorphous, rigid, tough thermoplastics with high second-order transitions (Tg). Thermal stability and electrical properties are noteworthy. These and other properties are described for polysulfone, and glass transitions are given for a selected list of the other polyethers.  相似文献   

8.
Difunctional magnesium, zinc, and tin reagents M?C6H4?O?C6H4?M (M = MgBr, ZnCl, SnBu3) in the presence of palladium or nickel catalysts undergo cross-coupling polymerizations with aromatic, heteroaromatic, benzylic, and allylic dihalides to give oligomeric and polymeric materials. Tin reagents lead to products of higher molecular weight than Mg and Zn reagents. The reaction is sensitive to the solvent and enhanced by magnesium halides. Increased reaction temperatures lead only to moderate increases in the degree of polymerization and are limited by catalyst decomposition above 200°C. The new poly(ether ketone) and poly(ether sulfone) type polymers prepared show high thermal stability. In contrast to conventional poly(ether sulfones)s, the biphenyl-based sulfone polymers reported here are crystalline. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
Wholly aromatic polysulfonamides of high molecular weight were prepared by the solution poly-condensation of aromatic disulfonyl chlorides with aromatic diamines in tetramethylene sulfone and substituted pyridines as the acid acceptor. Polysulfonamides with inherent viscosities as high as 1.2 were readily obtained by initiating polycondensation at a temperature of 5–10°C to control the side reactions. The polycondensation was fairly fast and was completed in 10 min at 60°C. All the aromatic polysulfonamides dissolved in a wide range of solvents, including acetone and tetrahydrofuran. These polymers were less thermally stable than the corresponding aromatic polyamides.  相似文献   

10.
A general method for the preparation of aromatic poly (ether-sulfone-amide)s has been developed. Polymerization is based on the palladium-catalyzed polycondensation of aromatic dibromides containing ether sulfone structural units, aromatic diamines, and carbon monoxide. Reactions were carried out in N, N-dimethylacetamide (DMAc) in the presence of palladium catalyst, triphenylphosphine, and 1,8-diazabicyclo [5,4,0]–7–undecene (DBU), and gave a series of poly (ether-sulfone-amide)s with inherent viscosities up to 0.86 dL/g under mild conditions. The polymers were quite soluble in strong acids, dipolar aprotic solvents, and pyridine. Thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 470°C in air. The glass transition temperatures of the polymers were around 230°C, which are higher than those of poly (ether-sulfone) analogues. These polymers also showed the good tensile strengths and tensile modulus. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A series of new poly(arylene ether sulfone)s has been obtained by solution condensation polymerisation starting from 1,5- and 2,6-bis-(4-fluorosulfonyl)naphthalene with various aromatic dihydroxy compounds. The polymers, obtained in quantitative yields, possessed inherent viscosities in the range 0.28-0.68 dl g−1, had good thermal stability (10% weight loss temperatures were above 405 and 420 °C respectively in nitrogen and air) and high glass transition temperatures (in the range 217-258 °C). They have been characterised by elemental and infrared analyses, GPC and wide-angle X-ray diffraction. The properties of these poly(arylene ether sulfone)s have been compared with those of the corresponding poly(arylene ether ketone)s.  相似文献   

12.
A series of aromatic polyesters has been prepared by low-temperature solution polycondensation of derivatives of dihydroxydinaphthyl or dihydroxydinaphthylmethane with terephthaloyl chloride. The chemical, physical, and thermal properties of some polyesters have been investigated. Some of the polyesters obtained have high melting temperatures (340–420°C) and very good thermal resistance. In spite of their high melting temperatures some polymers give solutions in organic solvents which make it possible to produce films and coatings with good dielectric and mechanical properties and with a relatively high thermal resistance.  相似文献   

13.
A new aromatic sulfone ether diamine was synthesized by nucleophilic aromatic substitution reaction of 5‐amino‐1‐naphthol with bis(4‐chlorophenyl) sulfone in the presence of potassium carbonate in a polar aprotic solvent. Polycondensation reactions of the obtained diamine with pyromellitic dianhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene diphthalic anhydride (6FDA) resulted in preparation of thermally stable poly(sulfone ether imide)s. Poly(sulfone ether amide)s also were prepared by reaction of the diamine with terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC). The prepared monomer and polymers were characterized by conventional methods. Physical and mechanical properties of polymers, including thermal stability, thermal behavior, solution viscosity, solubility behavior, and modulus, also were studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1487–1492, 2000  相似文献   

14.
A set of novel aromatic polyamides containing pyridine pendent groups was prepared from aromatic diamines and new monomers that are 5‐substituted derivatives of isophthalic acid bearing nicotinamide, isonicotinamide, or picolinamide groups. The polymers were obtained in high yield and high molecular weight by the phosphorylation method of polycondensation. They were characterized by spectroscopic and chromatographic methods and several of their properties were investigated. All of the polymers were soluble in polar aprotic solvents and gave films of good mechanical properties. Glass transition temperatures were higher than that of the reference polymer, poly(m‐phenyleneisophthalamide) (IP‐MPD), while the thermal resistance, defined by the initial decomposition temperature observed by thermogravimetry, was in the range 370–420 °C, lower by 30–70 °C than that of IP‐MPD. The presence of a pendent pyridine group and an additional amide side group per repeat unit made the polymers essentially amorphous and greatly improved their abilities to absorb water in comparison with nonsubstituted polyamides. Water uptake values up to 15% were observed at 65% relative humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5300–5311, 2005  相似文献   

15.
A study was made of the preparation of aromatic polymeric amines in order to test their thermal stability. The most useful method was the hydrogenation of polymeric Schiff bases by the dimethylamine—borane reagent or the borane—tetrahydrofuran reagent. The Schiff bases were prepared by the solution polymerization of terephthalaldehyde with various aromatic diamines, including 4,4′-methylenedianiline, benzidine, and p-phenylenediamine, and for comparison, 1,6-hexanediamine. The Schiff bases and the polyamines from the aromatic diamines were found to be dimers or trimers, not high polymers: the polymers from the aliphatic diamine had a degree of polymerization of about 14. Thermogravimetric analyses of the aromatic polyamines under nitrogen showed that the initial temperatures of marked degradation were 350–400°C.  相似文献   

16.
Twelve novel polyisophthalamides containing short sequences of oxyethylene as pendent substituents were synthesized by the reaction of three aromatic diamine monomers and four novel diacid monomers containing pendent oxyethylene units. Two of the diacid monomers were derived from 5‐hydroxyisophthalic acid and the other two diacid monomers were derived from 5‐aminoisophthalic acid. The polymers were prepared in high yield and high molecular weight by the phosphorylation method of polycondensation. All of the polymers were soluble in organic aprotic solvents at room temperature and gave creasable films by casting from solution. The mechanical properties of the films were reasonably good, with tensile strengths in the range of 70–100 MPa and moduli around 2.5 GPa. However, the presence of the oxyethylene side sequences greatly diminished the thermal resistance and the glass transition temperatures of the present polymers compared with wholly aromatic polyisophthalamides. A study was also made on the effect of the chemical composition on water uptake. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45:4671–4683, 2007  相似文献   

17.
Two novel series of ambipolar and near‐infrared electrochromic aromatic polyamides with electroactive anthraquinone group were synthesized from new aromatic diamines, 2‐(bis(4‐aminophenyl)amino)anthracene‐9,10‐dione and 2‐(4‐(bis(4‐aminophenyl)amino)phenoxy)anthracene‐9,10‐dione, respectively, via low‐temperature solution polycondensation reaction. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures (Tg) (285–360 °C). Electrochemical studies of these electrochromic polyamides revealed ambipolar behavior with reversible redox couples and high contrast ratio both in the visible range and near‐infrared region. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Linear, high molecular weight aryleneisopropylidene (AIP) polymers have been synthesized via Friedel-Crafts alkylation reactions. Monomers such as p-bis-2-chloroiso-propylbenzene condense readily with arylene compounds of high electron density such as naphthalene and diphenyl ether. Catalytic amounts of tritylhexafluoroarsenate catalysts in combination with aluminum chloride and nitrobenzene direct the synthetic reactions towards a pure AIP structure. Side reactions which give polyindane structures through dimerization of p-bis(2-chloroisopropyl)benzene are eliminated when the polymerization temperature is kept below ?20°C. The preferred solvents are chlorinated compounds. A wide range of structural modifications and properties can be obtained by varying the monomer combinations. Desirable physical properties of AIP polymers include clarity, rigidity, impact toughness, oxidative stability, and resistance to stress cracking.  相似文献   

19.
Polyketone resins have been prepared by the Friedel-Crafts polymerization of dithiophenylidenecyclopentanone (Ⅰ), dithiophenylidenecyclohexanone (Ⅱ) and dithiophenylideneacetone (Ⅲ) with adipoyl, sebacoyl and terephthaloyl dichlorides using boron trifluoride as catalyst and carbon disulphide as solvent. Polymers were characterized with IR, 1 H-NMR, and the results showed the presence of carbonyl of ketonic groups in the main chain. The polyketones have inherent viscosities of 0.40-0.70 dL/g. All the polymers are semicrystalline and most of them are partially soluble in most common organic solvents but freely soluble in aprotic solvents. The temperatures of 50% weight loss are as high as 185℃ to 280℃ in air, indicating that these aromatic polyketones have excellent thermal stability. All the polyketones were tested for their antimicrobial activity against bacteria and fungi.  相似文献   

20.
Polymerization of butadiene sulfone (BdSO2) by various catalysts was studied. Azobisisobutyronitrile (AIBN), butyllithium, tri-n-butylborn (n-Bu)3B, boron trifluoride etherate, Ziegler catalyst, and γ-radiation were used as catalysts. Butadiene sulfone did not polymerize with these catalysts at low temperatures (below 60°C.), but polymers were obtained at high temperature with AIBN or (n-Bu)3B. The polymerization of BdSO2 initiated by AIBN in benzene at 80–140°C. was studied in detail. The obtained polymers were white, rubberlike materials and insoluble in organic solvents. The polymer composition was independent of monomer and initiator concentrations and reaction time. The sulfur content in polymer decreased with increasing polymerization temperature. The polymers prepared at 80 and 140°C. have the compositions (C4H6)1.55- (SO2) and (C4H6)3.14(SO2), respectively, and have double bonds. These polymers were not alternating copolymers of butadiene with sulfur dioxide. The polymerization mechanism was discussed from polymerization rate, polymer composition, and decomposition rate of BdSO2. From these results, the polymerization was thought to be “decomposition polymerization,” i.e., butadiene and sulfur dioxide, formed by the thermal decomposition of BdSO2, copolymerized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号