首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrastfilters for NMR imaging of residual 1H dipolar couplings of elastomers are introduced based on dipolar-encoded longitudinal magnetization, as well as double- and triple-quantum coherences. The spin response is discussed in the initial excitation time regime for methylene, methyl, and methine protons applicable to poly(isoprene) and other elastomers, taking into account the hierarchy of dipolar couplings and the associated editing features of multiple-quantum experiments. The efficiency of these filters is investigated for a series of cross-linked poly(isoprene) samples. Spatially resolved dipolar-encoded longitudinal magnetization decays and double-quantum and triple-quantum buildup curves are presented for a phantom made of poly(isoprene) with different cross-link densities. Two-dimensional images representing residual dipolar couplings are presented using dipolar-encoded longitudinal magnetization, double-quantum, and triple-quantum contrast filters. Images from dipolar-encoded longitudinal magnetization and triple-quantum coherences show the highest resolution and contrast, respectively.  相似文献   

2.
Contrastfilters for NMR imaging of residual 1H dipolar couplings of elastomers are introduced based on dipolar-encoded longitudinal magnetization, as well as double- and triple-quantum coherences. The spin response is discussed in the initial excitation time regime for methylene, methyl, and methine protons applicable to poly(isoprene) and other elastomers, taking into account the hierarchy of dipolar couplings and the associated editing features of multiple-quantum experiments. The efficiency of these filters is investigated for a series of cross-linked poly(isoprene) samples. Spatially resolved dipolar-encoded longitudinal magnetization decays and double-quantum and triple-quantum buildup curves are presented for a phantom made of poly(isoprene) with different cross-link densities. Two-dimensional images representing residual dipolar couplings are presented using dipolar-encoded longitudinal magnetization, double-quantum, and triple-quantum contrast filters. Images from dipolar-encoded longitudinal magnetization and triple-quantum coherences show the highest resolution and contrast, respectively.  相似文献   

3.
The homonuclear and heteronuclear residual dipolar couplings in elastomers reflect changes in the cross-link density, temperature, the uniaxial and biaxial extension or compression as well as the presence of penetrant molecules. It is shown theoretically that for an isolated methyl group the relative changes in the intensity of the homonuclear double-quantum buildup curves in the initial time regime due to variation of the residual dipolar coupling strength is less sensitive than the changes in the triple-quantum filtered NMR signal when considering the same excitation/reconversion time. For a quadrupolar nucleus with spin I=2 the sensitivity enhancement was simulated for four-quantum, triple-quantum, and double-quantum buildup curves. In this case the four-quantum build-up curve shows the highest sensitivity to changes of spin couplings. This enhanced sensitivity to the residual dipolar couplings was tested experimentally by measuring 1H double-quantum, triple-quantum, and four-quantum buildup curves of differently cross-linked natural rubber samples. In the initial excitation/reconversion time regime, where the residual dipolar couplings can be measured model free, the relative changes in the intensity of the four-quantum buildup curves are about five times higher than those of the double-quantum coherences. For the first time proton four-quantum coherences were recorded for cross-linked elastomers.  相似文献   

4.
The possibility of exciting and filtering various multipolar spin states in proton NMR like dipolar encoded longitudinal magnetization (LM), double-quantum (DQ) coherences, and dipolar order (DO) in strongly inhomogeneous static and radio-frequency magnetic fields is investigated. For this purpose pulse sequences which label and manipulate the multipolar spin states in a specific way were implemented on the NMR-MOUSE (mobile universal surface explorer). The performance of the pulse sequences was also tested in homogeneous fields on a solid-state high-field NMR spectrometer. The theoretical justification of these procedures was shown for a rigid two-spin 1/2 system coupled by dipolar interactions. Dipolar encoded longitudinal magnetization decay curves, double-quantum and dipolar-order buildup curves, as well as double-quantum decay curves were recorded with the NMR-MOUSE for natural rubber samples with different crosslink density. The possibility of using these multipolar spin states for investigations of strained elastomers by NMR-MOUSE is also shown. These curves give access to quantitative values of the ratio of the total residual dipolar couplings of the protons in the series of samples which are in good agreement with those measured in homogeneous fields.  相似文献   

5.
Proton multipolar spin states associated with dipolar encoded longitudinal magnetization (DELM) and double-quantum (DQ) coherences of bound water are investigated for bovine and sheep Achilles tendon under mechanical load. DELM decay curves and DQ buildup and decay curves reveal changes of the 1H residual dipolar couplings for tendon at rest and under local compression forces. The multipolar spin states are used to design dipolar contrast filters for NMR 1H images of heterogeneous tendon. Heterogeneities in tendon samples were artificially generated by local compression parallel and perpendicular to the tendon plug axis. Quotient images obtained from DQ-filtered images by matched and mismatched excitation/reconversion periods are encoded only by the residual dipolar couplings. Semi-quantitative parameter maps of the residual dipolar couplings of bound water were obtained from these quotient images using a reference elastomer sample. This method can be used to quantify NMR imaging of injured ordered tissues.  相似文献   

6.
Spin systems with residual dipolar couplings such as creatine, taurine, and lactate in skeletal muscle tissue exhibit first-order spectra in in vivo 1H NMR spectroscopy at 1.5 T because the coupled protons are represented by (nearly) symmetrized eigenfunctions. The imidazole ring protons (H2, H4) of carnosine are suspected to form also a coupled system. The ring's stiffness could enable a connectivity between these anisochronous protons with the consequence of second-order spectra at low field strength. Our purpose was to study whether this deviation from the Paschen-Back condition can be used to detect the H2-H4 coupling in localized 1D 1H NMR spectra obtained at 1.5 T (64 MHz) from the human calf in a conventional whole-body scanner. As for the hydrogen hyperfine interaction, a Breit-Rabi equation was derived to describe the transition from Zeeman to Paschen-Back regime for two dipolar-coupled protons. The ratio of the measurable coupling strength (Sk) and the difference in resonance frequencies of the coupled spins (Deltaomega) induces quantum-state mixing of various degree upon definition of an appropriate eigenbase of the coupled spin system. The corresponding Clebsch-Gordan coefficients manifest in characteristic energy corrections in the Breit-Rabi formula. These additional terms were used to define an asymmetry parameter of the line positions as a function of Sk and Deltaomega. The observed frequency shifts of the resonances were found to be consistent with this parameter within the accuracy achievable in in vivo NMR spectroscopy. Thus it was possible to identify the origin of satellite peaks of H2, H4 and to describe this so far not investigated type of residual dipolar coupling in vivo.  相似文献   

7.
Residual dipolar couplings for pairs of proximate magnetic nuclei in macromolecules can easily be measured using high-resolution NMR methods when the molecules are dissolved in dilute liquid crystalline media. The resulting couplings can in principle be used to constrain the relative orientation of molecular fragments in macromolecular systems to build a complete structure. However, determination of relative fragment orientations based on a single set of residual dipolar couplings is inherently hindered by the multi-valued nature of the angular dependence of the dipolar interaction. Even with unlimited dipolar data, this gives rise to a fourfold degeneracy in fragment orientations. In this Communication, we demonstrate a procedure based on an order tensor analysis that completely removes this degeneracy by combining residual dipolar coupling measurements from two alignment media. Application is demonstrated on (15)N-(1)H residual dipolar coupling data acquired on the protein zinc rubredoxin from Clostridium pasteurianum dissolved in two different bicelle media.  相似文献   

8.
A series of cross-linked styrene-butadiene rubbers (SBR) filled with different amounts of carbon black and silica are investigated by proton multiple-quantum nuclear magnetic resonance (NMR). The method yields reliable information on residual dipolar couplings and their distribution, which in turn are related to local chain order and the effective cross-link density in these systems. Fundamental differences between the response of a linear precursor, which undergoes reptational motion, and vulcanized SBR are discussed. For the latter, it is found that the average chain order parameter as well as its distribution does not change significantly with the amount and the type of filler. This is in surprising contrast to recent results from Hahn-echo relaxometry applied to the same samples, which indicated a significant filler effect on the cross-link density.  相似文献   

9.
A novel three-dimensional NMR experiment is reported that allows the observation of correlations between amide and other protons via residual dipolar couplings in partially oriented proteins. The experiment is designed to permit quantitative measurement of the magnitude of proton-proton residual dipolar couplings in larger molecules and at higher degree of alignments. The observed couplings contain data valuable for protein resonance assignment, local protein structure refinement, and determination of low-resolution protein folds.  相似文献   

10.
One-bond heteronuclear and two-bond homonuclear residual dipolar couplings measured at methylene or amine sites can be utilized as long-range constraints in structure determination of molecules as well as to facilitate characterization of local conformation by stereospecific assignment of diastereotopic protons. We present two J-modulated HMQC type experiments to measure the one-bond heteronuclear dipolar coupling contributions of geminal protons individually. In addition two-bond homonuclear residual dipolar couplings between the diastereotopic protons are also obtained.  相似文献   

11.
We report a novel two-dimensional NMR pulse scheme for the 1H-detected observation of 2H in isotopically 13C, 2H-enriched carbohydrates. This scheme is used for the indirect observation of residual quadrupolar couplings in 13C, 2H-enriched methyl-beta-D-glucopyranoside weakly aligned in a dilute lyotropic liquid-crystalline medium comprising 20% (w/v) dihexanoyl-phosphatidylcholine/dimyristoyl-phosphatidylcholine (1:3 mol/mol) in D2O. The observed residual quadrupolar couplings are substantially larger than residual dipolar one-bond 13C-1H couplings under the same experimental conditions. These quadrupolar couplings are thus a useful alternative to dipolar couplings for the structural analysis of small molecules that align very weakly in dilute liquid-crystalline media. Moreover, since the quadrupolar coupling constant is very uniform throughout endocyclic deuterons of the carbohydrate, these data suggest that adoption of a single average value of this parameter in 2H relaxation studies on the glycan moieties of glycoproteins and glycopeptides is a valid assumption.  相似文献   

12.
A novel three-dimensional NMR experiment is reported that allows the observation of correlations between amide and other protons via residual dipolar couplings in partially oriented proteins. The experiment is designed to permit quantitative measurement of the magnitude of proton–proton residual dipolar couplings in larger molecules and at higher degree of alignments. The observed couplings contain data valuable for protein resonance assignment, local protein structure refinement, and determination of low-resolution protein folds.  相似文献   

13.
The spin system response to the five-pulse sequence used for measurements of double-quantum and triple-quantum buildup curves is evaluated in the initial excitation/reconversion regime. The multispin dipolar network that is present also in many soft solids like elastomers was considered. It is proved rigorously that the relevant quantity for analysis of double-quantum build-up curves in the initial regime is the second van Vleck moment. The higher-order moments edited by double-quantum as well as higher-order coherences in the multiple-quantum build-up experiments are different from van Vleck moments. These results can be applied to compare (1)H residual moments edited by double-quantum and triple-quantum experiments with those measured by other NMR methods. The sensitivity of multiple-quantum coherences to the changes in the values of residual dipolar couplings for cross-linked natural rubber under uniaxial elongation is also discussed. Under such conditions (1)H second van Vleck moments were measured for different elongation ratios of a cross-linked natural rubber. Moreover, (1)H triple-quantum edited moments were also measured for the same sample under uniaxial compression. The dependence of the second van Vleck moment and the time of the maximum of the double-quantum buildup curve on the cross-link density of natural rubber measured at low magnetic field was also investigated.  相似文献   

14.
The effect of the magnetic field strength on the magnitude of residual dipolar couplings introduced by dilute liquid crystal media was investigated. One-bond heteronuclear residual dipolar couplings and residual deuterium quadrupolar splitting of the water were monitored at various static magnetic fields. It is suggested that the value of residual anisotropic NMR parameters resulting from exchange between ordered and non-ordered molecules decreases with increasing magnetic fields.  相似文献   

15.
A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.  相似文献   

16.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

17.
Two-dimensional (1)H-(13)C INEPT MAS NMR experiments utilizing a (1)H-(1)H magnetization exchange mixing period are presented for characterization of lipid systems. The introduction of the exchange period allows for structural information to be obtained via (1)H-(1)H dipolar couplings but with (13)C chemical shift resolution. It is shown that utilizing a RFDR recoupling sequence with short mixing times in place of the more standard NOE cross-relaxation for magnetization exchange during the mixing period allowed for the identification and separation of close (1)H-(1)H dipolar contacts versus longer-range inter-molecular (1)H-(1)H dipolar cross-relaxation. These 2D INEPT experiments were used to address both intra- and inter-molecular contacts in lipid and lipid/cholesterol mixtures.  相似文献   

18.
A method for accurately measuring H(N)-H(alpha) residual dipolar couplings is described. Using this technique, both the sign and magnitude of the coupling can be determined easily. Residual dipolar coupling between H(N)(i)-H(alpha)(i) and H(N)(i)-H(alpha)(i-1) were measured for the FK506 binding protein complexed to FK506. The experimental values were in excellent agreement with predictions based on an X-ray crystal structure of the protein/ligand complex, suggesting that these residual dipolar couplings will provide accurate structural constraints for the refinement of protein structures determined by NMR.  相似文献   

19.
The measurement of dipolar couplings between nuclei is a convenient way of obtatining directly liquid crystalline ordering through NMR since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal. However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbour spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton-proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is also presented.  相似文献   

20.
随着固体NMR理论和谱仪硬件技术的不断发展,近年来固体NMR技术在高分子多尺度结构与动力学研究领域中正发挥着越来越重要的作用. 多脉冲及高速魔角旋转(MAS)等质子高分辨技术的发展使得高灵敏度的1H谱可有效地用于高分子化学结构与链间相互作用的检测;基于化学键(J-耦合)相关和通过空间(偶极耦合)相互作用的各种二维异核相关谱NMR新技术,使得复杂高分子的链结构得以严格解析. 基于MAS下同核和异核偶极-偶极相互作用、化学位移各向异性等各向异性相互作用重聚的系列新技术,使得研究者可在采用高分辨1H或13C 检测信号的同时检测准静态下的各向异性相互作用,进而获得与之密切相关的结构和动力学信息. 通过质子偶极滤波技术可有效检测多相聚合物中的界面相与相区尺寸、高分子共混物中的相容性等问题. 在动力学的研究中,通过质子间自旋扩散的有效压制技术和化学位移各向异性的重聚,目前已经可以有效地获取链段上单个化学键的快速局域运动以及链段的超慢分子运动. 上述丰富的多尺度NMR技术可以使研究者在不同空间和时间尺度上对高分子聚合物的微观结构、相分离和动力学行为等进行详细的研究,进而阐明高分子微观结构与宏观性能的关联. 该文以固体NMR中最主要的2类核(1H和13C)的检测技术为主线,简单介绍近年来固体NMR领域的一些最新研究进展及其在高分子结构和动力学研究中的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号