首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of benzynes with N‐heteroaromatics including quinolines, isoquinolines, and pyridines and various terminal alkynes or ketones with an α‐hydrogen in the presence of KF and 18‐crown‐6 in THF at room temperature for 8 h gave various N‐arylated 1,2‐dihydroheteroaromatics in good to moderate yields. Some of these product structures are found in various naturally occurring and biologically active heterocyclic compounds. The reaction involves an unusual multiple construction of new C? C, C? N, and C? H bonds and the cleavage of a C? H bond in one pot. It is likely that the three‐component coupling proceeds through the nucleophilic addition of quinoline to benzyne, which generates a zwitterionic species. The latter then attracts a proton from terminal alkyne (or ketone) to generate an N‐arylated quinolinium cation and an acetylide anion. Further reaction of these two ions provides the final substituted 1,2‐dihydroquinolines. In the reaction, the terminal alkyne acts first as a proton donor and then as a nucleophile. The application of a three‐component coupling reaction product, 1,2‐dihydro‐2‐pyridinyl alkyne in a stereospecific [4+2] Diels–Alder cycloaddition reaction with N‐phenyl maleimide to give an isoquinuclidine derivative, an important core present in various natural products, is demonstrated.  相似文献   

2.
Robles O  McDonald FE 《Organic letters》2008,10(9):1811-1814
A modular approach to the synthesis of complex polyketide natural products is demonstrated for the synthesis of the C9-C27 degradation product from aflastatin A. The product of the cross-coupling of C23-C27 terminal alkyne with C17-C22 epoxide underwent functionalization of the resulting internal alkyne, which was then coupled similarly with C9-C16 epoxide. This synthesis concluded with regio- and stereoselective addition of methyl onto the internal alkyne followed by stereoselective hydroboration-oxidation.  相似文献   

3.
The first synthesis of the natural products credneramide A and B was accomplished by utilizing Alder-ene reactions between a terminal alkene and an internal alkyne to generate the rather uncommon 1,4-diene substructure of these compounds. Moreover, two different short linear sequences toward these targets are evaluated using either a cobalt-catalyzed Alder-ene reaction of 1-chloropent-1-yne or a ruthenium-catalyzed Alder-ene reaction of 1-trimethylsilyl-1-pentyne with 5-hexenoic acid derivatives in the key step transformation. In addition, saponification of the primary Alder-ene product derived from the cobalt-catalyzed Alder-ene reaction led to credneric acid, the biological precursor of both natural products.  相似文献   

4.
Controlling reaction selectivity is an eternal pursuit for chemists working in chemical synthesis. As part of this endeavor, our group has been exploring the possibility of constructing different natural product skeletons from the same simple starting materials by using different catalytic systems. In our previous work, an isoflavanone skeleton was obtained from the annulation of a salicylaldehyde and an alkyne when a gold catalyst was employed. In this paper, it is shown that a coumarin skeleton can be efficiently obtained through an annulation reaction with the same starting materials, that is, terminal alkynes and salicylaldehydes, by simply switching to a rhodium catalyst. A plausible reaction mechanism is proposed for this new annulation based on isotopic substitution experiments.  相似文献   

5.
A method was developed for the direct functionalization of metalloporphyrins at the methine protons (meso positions) to yield asymmetric alkynylated derivatives by using gold catalysis and hypervalent iodine reagents. This single‐step procedure was applied to b‐type heme and the product was incorporated into a gas‐sensor heme protein. The terminal alkyne allows fluorophore labeling through copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC). Hemoproteins with this type of engineered cofactor have several potential applications in labeling and imaging technologies. Additionally, the alkyne provides a handle for modulating porphyrin electron density, which affects cofactor redox potential and ligand affinity. This method will be helpful for investigating the chemistry of natural heme proteins and for designing artificial variants with altered properties and reactivities.  相似文献   

6.
[structure: see text] The synthesis of a new series of rigid-rod aryleneethynylene derivatives of up to ca. 10 nm molecular length (compounds 16 and 17) is reported using iterative Pd-mediated Sonogashira coupling methodology combined with regioselective removal of the different protecting groups (namely, trimethylsilyl and 2-hydroxyprop-2-yl groups) from the terminal alkyne units. Additionally, the TMS-acetylene unit has been cleanly deprotected to afford a terminal alkyne in the presence of a cyanoethylsulfanyl group. Some of these molecular wires are functionalized with terminal protected thiophenol units for attachment to metal surfaces (compounds 16 and 17). Internal electron-acceptor units have been incorporated into their structures, namely, 9-[di(4-pyridyl)methylene]fluorene (compound 17) or fluorenone (compounds 19-22). Optical absorption and photoluminescence spectra reveal a red shift in the value of lambda(max) with increasing molecular length, which approaches saturation at an effective conjugation length of ca. 15-20 pi-units in the molecules, where each phenyl ring or a triple bond is counted as one pi-unit.  相似文献   

7.
The use of the bulky hydrotris(3-mesitylpyrazolyl)borate anionic ligand has allowed the synthesis of stable Tp(Ms)Cu(alkyne) complexes (alkyne = 1-hexyne, 1, phenylacetylene, 2, and ethyl propiolate, 3). The spectroscopic and structural features of these compounds and their relative reactivity have been examined, indicating the existence of a low π back-bonding from the copper(I) centre to the alkyne. Ligand exchange experiments have shown that terminal alkyne adducts are more stable than internal alkyne analogues. In good accordance with this, the previously reported alkyne cyclopropenation reaction catalysed by the Tp(x)Cu complexes can be rationalized and correlated with their relative stability.  相似文献   

8.
Owing to the intrinsic limitations of the conventional bioconjugation methods involving native nucleophilic functions of proteins, we sought to develop alternative approaches to introduce metallocarbonyl infrared labels onto proteins on the basis of the [3 + 2] dipolar azide‐alkyne cycloaddition (AAC). To this end, two cyclopentadienyl iron dicarbonyl (Fp) complexes carrying a terminal or a strained alkyne handle were synthesized. Their reactivity was examined towards a model protein and poly (amidoamine) (PAMAM) dendrimer, both carrying azido groups. While the copper (I)‐catalysed azide‐alkyne cycloaddition (CuAAC) proceeded smoothly with the terminal alkyne metallocarbonyl derivative, labelling by strain‐promoted azide‐alkyne cycloaddition (SPAAC) was less successful in terms of final coupling ratios. Infrared spectral characterization of the bioconjugates showed the presence of two bands in the 2000 cm?1 region, owing to the stretching vibration modes of the carbonyl ligands of the Fp entities.  相似文献   

9.
The important biochemical probe molecule brefeldin A ( 1 ) has served as an inspirational target in the past, but none of the many routes has actually delivered more than just a few milligrams of product, where documented. The approach described herein is clearly more efficient; it hinges upon the first implementation of ruthenium‐catalyzed trans‐hydrogenation in natural products total synthesis. Because this unorthodox reaction is selective for the triple bond and does not touch the transannular alkene or the lactone site of the cycloalkyne, it outperforms the classical Birch‐type reduction that could not be applied at such a late stage. Other key steps en route to 1 comprise an iron‐catalyzed reductive formation of a non‐terminal alkyne, an asymmetric propiolate carbonyl addition mediated by a bulky amino alcohol, and a macrocyclization by ring‐closing alkyne metathesis catalyzed by a molybdenum alkylidyne.  相似文献   

10.
A binary catalytic system, RuCl2(N‐heterocyclic carbene)(p‐cymene)/alkyne, was developed for improved molecular weight control in ring‐opening metathesis polymerization (ROMP) reactions of norbornene derivatives in organic and aqueous media. Monometallic ruthenium arene compounds were activated using aryl and aliphatic terminal alkynes to form highly active metathesis species. The effects of alkyne structure and concentration on the overall catalytic activity were systematically investigated. The catalytic activity of the metathesis active species can be tuned by varying alkyne substituents. Also, the initiation rate of the ROMP reaction can be tuned by increasing the alkyne‐to‐Ru ratio. ROMP polymers with a wide range of molecular weights (91–832 kDa) were isolated in organic media, whereas polymers with a molecular weight range of 110–280 kDa with average particle sizes of 150–250 nm were isolated in aqueous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In an alcoholic solvent under the catalysis of Cu(OAc)2?H2O, organic azide and terminal alkyne could oxidatively couple to afford 5‐alkynyl‐1,2,3‐triazole (alkynyltriazole) at room temperature under an atmosphere of O2 in a few hours. The involvement of 1,5‐diazabicyclo[4.3.0]non‐5‐ene (DBN) is essential, without which the redox neutral coupling instead proceeds to produce 5‐H‐1,2,3‐triazole (protiotriazole) as the major product. Therefore, DBN switches the redox neutral coupling between terminal alkyne and organic azide, the copper‐catalyzed “click” reaction to afford protiotriazole, to an oxidation reaction that results in alkynyltriazole. The organic base DBN is effective in accelerating the copper(II)‐catalyzed oxidation of terminal alkyne or copper(I) acetylide, which is intercepted by an organic azide to produce alkynyltriazole. The proposed mechanistic model suggests that the selectivity between alkynyl‐ and protiotriazole, and other acetylide or triazolide oxidation products is determined by the competition between copper(I)‐catalyzed redox neutral cycloaddition and copper(II)/O2‐mediated acetylide oxidation after the formation of copper(I) acetylide.  相似文献   

12.
The total synthesis of the natural product RK-397 is based on a new synthetic strategy for assembling polyacetate structures, by efficient cross-coupling of nucleophilic terminal alkyne modules with electrophilic epoxides bearing another alkyne at the opposite terminus. The natural product is constructed from four principal modules: a polyene precursor for carbons 3-9, and three alkyne-terminated modules for carbons 10-16, 17-22, and 23-33. Each module is prepared with control of all stereochemical elements, and the alkynyl alcohols obtained from alkyne-epoxide couplings are converted into 1,3-diols by a sequence of hydroxyl-directed hydrosilylation, C-Si bond oxidation, and stereoselective ketone reduction with induction from the beta-hydroxyl group. The highly convergent nature of our synthetic pathway and the flexibility of the modular synthesis strategy for virtually any stereoisomer can provide access to other members of the polyene-polyol macrolides, including stereoisomers of RK-397.  相似文献   

13.
龙虹  朱永新 《分析化学》2003,31(5):631-634
多通道电化学检测是按照新一代电化学检测仪器的要求而设计的产品。它具有使用方便,快速准确,排除干扰等多种功能,非常适用于复杂体系中化合物的测定。本文报道了液相色谱/四通道电化学检测法在天然酚类化合物测定中的应用。此方法能快速获得待测物的流体动力学伏安图(HDV图);色谱峰的鉴定可靠;在不同电压下同时定量测定不同的化合物。本文以测定蜂蜜中的酚酸类化合物及绿茶中的儿茶素类化合物为例对此分析方法进行了阐述。  相似文献   

14.
The first general preparative access to compounds of the 2,3‐diethynyl‐1,3‐butadiene (DEBD) class is reported. The synthesis involves a one‐pot, twofold Sonogashira‐type, Pd0‐catalyzed coupling of two terminal alkynes and a carbonate derivative of a 2‐butyne‐1,4‐diol. The synthesis is broad in scope and members of this structural family are kinetically stable enough to be handled using standard laboratory techniques at ambient temperature. They decompose primarily through heat‐promoted cyclodimerizations, which are impeded by alkyl substitution and accelerated by aryl or alkenyl substitution. An iterative sequence of these unprecedented Sonogashira‐type couplings generates a new type of expanded dendralene. A suitably substituted DEBD carrying two terminal alkyne groups undergoes Glaser–Eglinton cyclo‐oligomerization to produce a new class of expanded radialenes, which are chiral due to restricted rotation about their 1,3‐butadiene units. The structural features giving rise to atropisomerism in these compounds are distinct from those reported previously.  相似文献   

15.
The alkyne is a biologically significant moiety found in many natural products and a versatile functional group widely used in modern chemistry. Recent studies have revealed the biosynthesis of acetylenic bonds in fatty acids and amino acids. However, the molecular basis for the alkynyl moiety in acetylenic prenyl chains occurring in a number of meroterpenoids remains obscure. Here, we identify the biosynthetic gene cluster and characterize the biosynthetic pathway of an acetylenic meroterpenoid biscognienyne B based on heterologous expression, feeding experiments, and in vitro assay. This work shows that the alkyne moiety is constructed by an unprecedented cytochrome P450 enzyme BisI, which shows promiscuous activity towards C5 and C15 prenyl chains. This finding provides an opportunity for discovery of new compounds, featuring acetylenic prenyl chains, through genome mining, and it also expands the enzyme inventory for de novo biosynthesis of alkynes.  相似文献   

16.
[reaction: see text] A variety of 3-enynyl substituted flavones/thioflavones were synthesized via a sequential one-pot procedure using copper-free palladium-catalyzed cross coupling in a simple synthetic operation. The cross coupling between 3-iodo(thio)flavone and a broad range of terminal alkynes was carried out in the presence of Pd(PPh3)2Cl2 and triethylamine to afford the corresponding 3-enynyl derivatives in a regio- and stereoselective fashion. The best results are obtained by employing 3 equiv of the terminal alkynes. The process worked well irrespective of the substituents present on the (thio)flavone ring as well as in the terminal alkynes except arylalkynes. The reaction is quite regioselective, placing the substituent of the terminal alkyne at the far end of the double bond attached with the (thio)flavone ring. The orientation of the (thio)flavonyl and acetylenic moieties across the double bond was found to be syn in the products isolated. A tandem C-C bond-forming reaction in the presence of palladium catalyst rationalized the formation of coupled product. The catalytic process apparently involves heteroarylpalladium formation, regioselective addition to the C-C triple bond of the terminal alkyne, and subsequent displacement of palladium by another mole of alkyne. The present methodology is useful for the introduction of an enynyl moiety at the C-3 position of flavones and thioflavone rings to afford novel compounds of potential biological interest. In the presence of CuI the process afforded 3-alkynyl (thio)flavones in good yields.  相似文献   

17.
An efficient skeletal reorganization of a terminal alkene armed with an appropriate siloxy alkyne fragment is a pivotal step in our novel and general strategy for the construction of a bicyclic core of eremophilanes with complete diastereocontrol and high synthetic efficiency. Our approach features three significant strategic elements. First, the enyne metathesis precursor is assembled via a highly endo-selective Diels-Alder reaction. Second, installation of the siloxy group at the alkyne terminus enables the regioselective assembly of the ensuing enone fragment via intramolecular enyne cyclization. Third, the common enone precursor offers the necessary flexibility of accessing several natural products of the eremophilane family.  相似文献   

18.
The total synthesis of two cytotoxic sponge alkaloids hachijodines F and G has been achieved. The synthesis of both compounds utilises a common intermediate alkyne. By comparison of spectra the structure of the natural product has been confirmed.  相似文献   

19.
Ring-opening metathesis and ring-closing metathesis (ROM-RCM) of cycloalkene-yne was demonstrated using a first- or second-generation ruthenium complex. When cycloalkenes bearing the alkyne part at the C-3 position were reacted with a first-generation ruthenium-carbene complex under an atmosphere of ethylene, ROM-RCM proceeded smoothly to give skeletal reorganized products in good yields. In this reaction, cycloalkene-ynes having terminal alkyne were suitable. On the other hand, when cycloalkenes bearing the alkyne part at the C-1 position were treated with a second-generation ruthenium-carbene complex, ROM-RCM proceeded smoothly to give bicyclic compounds and/or dimeric compounds in good yields.  相似文献   

20.
The alkyne functional group is found in many bioactive natural products and is the key to many important chemical transformations developed over recent years. Moreover, allenes have recently gained relevance as versatile reagents in organic synthesis. Mild, catalytic methods to enable the selective introduction of either alkyne or allene motifs into organic molecules are very valuable but, as yet, quite scarce. We describe an extremely mild and selective method for either the propargylation or allenylation of carbonyl compounds catalyzed by the abundant, safe, and inexpensive metal titanium. These reactions can selectively provide homopropargylic alcohols from aldehydes and ketones or α‐hydroxy‐allenes from aldehydes. The mechanisms involved were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号