首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The structures of 41 Ni(II) and 17 Cu(II) complexes of macrocyclic quadridentate ligands have been analyzed, and are discussed about bond lengths, bond angles, conformations, and configurations, upon which many conclusions are formed. The inter- or intra-molecular hydrogen bonds exist among ligands and hydrates in many compounds and play an important role in the structures. There are exhibited two distinct peaks on the histogram of the average Ni-N distances, corresponding to four coordination and six coordination; these average Ni-N distances are 1.95(4) Å and 2.10(5) Å, respectively. The most probable structures of Ni(II) macrocyclic compounds have coordination number six for the metal ion, chair forms for six-membered rings, planar structure for the metal ion and the four donor atoms of the quadridentate ligand and an inversion center at the central metal ion.  相似文献   

2.
A computational method targeted to Werner-type complexes is developed on the basis of quantum mechanical effective Hamiltonian crystal field (EHCF) methodology (previously proposed for describing electronic structure of transition metal complexes) combined with the Gillespie-Kepert version of molecular mechanics (MM). It is a special version of the hybrid quantum/MM approach. The MM part is responsible for representing the whole molecule, including ligand atoms and metal ion coordination sphere, but leaving out the effects of the d-shell. The quantum mechanical EHCF part is limited to the metal ion d-shell. The method reproduces with reasonable accuracy geometry and spin states of the Fe(II) complexes with monodentate and polydentate aromatic ligands with nitrogen donor atoms. In this setting a single set of MM parameters set is shown to be sufficient for handling all spin states of the complexes under consideration.  相似文献   

3.
Complexes of copper(II), nickel(II), cobalt(II), and zinc(II) with 2-[2-(6-methylbenzothiazolyl)azo]-5-dimethylaminobenzoic acid have been prepared and characterized by elemental analysis, vibrational spectra, magnetic susceptibility measurements, conductance measurements and e.p.r. spectra. Stability constants have been evaluated potentiometrically. Electronic spectra, magnetic susceptibility measurements and molecular modeling studies support a distorted square planar geometry around the metal ions. Vibrational spectra indicate the coordination of the azo group, nitrogen of benzothiazole, the carboxylate anion and the acetate ion on complexation with the metal ion. All complexes are found to be monomers. The stability of the complexes follow the order: copper(II) > nickel(II) > cobalt(II) > zinc(II).  相似文献   

4.
The binding of Cu(II) ions to partly neutralized poly(methacrylic acid) (PMA) has been investigated by potentiometric titration and dialysis to determine the stoichiometry the Cu–PMA complexes formed. Partly ionized PMA was titrated with solutions of the metal ion to enable a large range of metal ion/polymer ratios to be studied. Combination of the results from these two techniques at ionic strength 0.1 indicates that at very low Cu(II)/polymer ratios, a 4:1 complex exists, but at higher ratios the complex breaks down to give a mainly 2:1 coordination with some 1:1 binding. Conductance titrations support these results. Viscometric titrations show strong interactions between the metal and polymer, preventing the full extension of the polyion at high degrees of ionization, and spectrophotometric titrations support the existence of at least two types of complexes in the solution.  相似文献   

5.
The coordination properties of the ditopic oxa-aza macrocycles L1-L3 toward Ni(II) and Co(II) have been investigated by means of potentiometric and UV-vis spectrophotometric measurements. L1-L3 contain two triamine and/or tetraamine chains separated by two dioxa chains and form both mono- and dinuclear complexes in aqueous solution. In the [ML]2+ complexes, the metal ion is coordinated by one of the two polyamine moieties, while the other does not participate in the coordination. In the dinuclear complexes each metal ion is coordinated, almost independently, to a single polyamine moiety. Under aerobic conditions the binuclear Co(II) complexes of the ligands L1-L3 are able to bind molecular oxygen, with a bridging coordination of O2 between the two metals.  相似文献   

6.
The synthesis of 5,10,15,20-tetraphenyl-2-thia-21-carbaporphyrin [S-confused thiaporphyrin, (SCPH)H] was optimized. The formation of the phlorin was detected, which was saturated at the meso carbon adjacent to thiophene. Phlorin converted readily to (SCPH)H in the final oxidation process. Insertion of cadmium(II) and zinc(II) into S-confused thiaporphyrin yielded (SCPH)Cd(II)Cl and (SCPH)Zn(II)Cl complexes. The macrocycle acted as a monoanionic ligand. Three nitrogen atoms and the C(21)H fragment of the inverted thiophene occupied equatorial positions. The compensation of the metal charge required the apical chloride coordination. The characteristic C(21)H resonances of the inverted thiophene ring were located at 1.71 and 1.86 ppm in the 1H NMR spectra of (SCPH)Cd(II)Cl and (SCPH)Zn(II)Cl, respectively. The proximity of the thiophene fragment to the metal ion induced direct scalar couplings between the spin-active nucleus of the metal (111/113Cd) and the adjacent 1H nucleus (J(CdH) = 8.97 Hz). The interaction of the metal ion and C(21)H also was reflected by significant changes of C(21) chemical shifts: (SCPH)Zn(II)Cl, 92.9 ppm and (SCPH)Cd(II)Cl, 88.2 ppm (free ligand (SCPH)H, 123.7 ppm). The X-ray analysis performed for (SCPH)Cd(II)Cl confirmed the side-on cadmium-thiophene interaction. The Cd...C(21) distance (2.615(7) A) exceeded the typical Cd-C bond lengths, but was much shorter than the corresponding van der Waals contact. The density functional theory (DFT) was applied to model the molecular structures of zinc(II) and cadmium(II) complexes of S-confused thiaporphyrin. Subsequent AIM analysis demonstrated that the accumulation of electron density between the metal and thiophene, which is necessary to induce these couplings, was fairly small. A bond path linked the cadmium(II) ion to the proximate C(22) carbon of the thiophene.  相似文献   

7.
A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML(2) composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.  相似文献   

8.
Knowledge of the complexes formed by N-coordinating ligands and Cu(II) ions is of relevance in understanding the interactions of this ion with biomolecules. Within this framework, we investigated Cu(II) complexation with mono- and polydentate ligands, such as ammonia, ethylenediamine (en), and phthalocyanine (Pc). The obtained Cu-N coordination distances were 2.02 A for [Cu(NH(3))(4)](2+), 2.01 A for [Cu(en)(2)](2+), and 1.95 A for CuPc. The shorter bond distance found for CuPc is attributed to the macrocyclic effect. In addition to the structure of the first shell, information on higher coordination shells of the chelate ligands could be extracted by EXAFS, thus allowing discrimination among the different coordination modes. This was possible due to the geometry of the complexes, where the absorbing Cu atoms are coplanar with the four N atoms forming the first coordination shell of the complex. For this reason multiple scattering contributions become relevant, thus allowing determination of higher shells. This knowledge has been used to gain information about the structure of the 1:2 complexes formed by Cu(II) ions with the amino acids histidine and glycine, both showing a high affinity for Cu(II) ions. The in-solution structure of these complexes, particularly that with histidine, is not clear yet, probably due to the various possible coordination modes. In this case the square-planar arrangements glycine-histamine and histamine-histamine as well as tetrahedral coordination modes have been considered. The obtained first-shell Cu-N coordination distance for this complex is 1.99 A. The results of the higher shells EXAFS analysis point to the fact that the predominant coordination mode is the so-called histamine-histamine one in which both histidine molecules coordinate Cu(II) cations through N atoms from the amino group and from the imidazole ring.  相似文献   

9.
Cobalt(II), nickel(II), copper(II), and zinc(II) trifluoromethanesulfonates form complexes with the phosphoryl ligands hexamethylphosphoric triamide, nonamethyl imidodiphosphoric tetramide, trimorpholinophosphine oxide, tributylphosphine oxide, and triphenylphosphine oxide. The compounds have been prepared by a substitution reaction using trialkyl orthoformates as dehydrating agents and were investigated with the aid of infrared and ligand-field spectroscopy. In all compounds the ligands coordinate via the phosphoryl oxygen atoms. In some complexes the trifluoromethanesulfonate anions are (semi-)coordinated to the metal ions. The coordination around the metal ions was found to be tetrahedral, square pyramidal, or octahedral depending on the particular combination of metal ion and ligand. In its coordination behaviour the CF3SO3? ion resembles the perrhenate ion.  相似文献   

10.
The synthesis and characterization of Co(II) and Co(III) 2,6-pyridinedicarboxylate (dipic(2-)) complexes are reported. Solid-state X-ray characterizations were performed on [Co(H(2)dipic)(dipic)].3H(2)O and [Co(dipic)(mu-dipic)Co(H(2)O)(5)].2H(2)O. Two coordination modes not previously observed in dipicolinate transition metal complexes were observed in these complexes; one involves metal coordination to the short C-O (C=O) bond, and the other involves metal coordination to a protonated oxygen atom. Solution studies, including paramagnetic NMR and UV-vis spectroscopy, were done showing the high stability and low lability of the Co(III) complex, whereas the Co(II) complexes exhibited ligand exchange in the presence of excess ligand. The [Co(dipic)(2)](2-) complex has pH dependent lability and in this regard is most similar to the [VO(2)dipic](-) complex. The [Co(dipic)(2)](2-) was found to be effective in reducing the hyperlipidemia of diabetes using oral administration in drinking water in rats with STZ-induced diabetes. Oral administration of VOSO(4) was used as a positive control for metal efficacy against diabetes. In addition to providing a framework to evaluate structure-function relationships of various transition metal complexes in alleviating the symptoms of diabetes, this work describes novel aspects of structural and solution cobalt chemistry.  相似文献   

11.
Formation constants of copper(II), zinc(II), calcium(II) and gadolinium(III) with N,N'-bis(2-hydroxyiminopropionyl) propane-1,3-diamine (L2) have been studied at 25 degrees C and an ionic strength of 0.15 mol dm(-3). The reasonably high formation constants of the copper with this ligand are due to the ease with which the metal ion deprotonates the amide moieties. The square-planar coordination of L2 towards copper as predicted from UV-visible data may also account for the high selectivity of L2 towards the metal ion. Octanol/water partition coefficients of Cu(II)-L2 complexes indicate that although these complexes are largely hydrophilic, approximately 1.86% of the [CuL2H(-1)] species goes into the octanol layer and hence may promote dermal absorption of copper with a calculated penetration rate of 1.24 x 10(-5) cm h(-1). The [CuL2H(-1)] complex which predominates at pH 7.4 is a poor mimic of native copper-zinc superoxide dismutase. Blood-plasma simulation studies predict that, despite the high concentration of zinc and calcium in vivo, L2 is able to increase the low-molecular-mass fraction of copper. Biodistribution experiments using 64Cu-labelled [CuL2H(-1)] indicate an initial high uptake of this species in the liver, but it is predominantly excreted through the renal system.  相似文献   

12.
The equilibrium constants have been determined for the extra coordination of nitrogen(II) oxide and its metabolite formed in biochemical reactions (the nitrite ion) by cobalt complexes of porphyrins with various structures in ethanolic and aqueous solutions with near-physiological pHs. The far higher values of the thermodynamic stability constants of (NO)CoP nitrosyl complexes compared to those for nitrite complexes argue for a considerable covalence of the Co-NO bond.  相似文献   

13.
Manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and chromium(III) complexes of (E)-2-(2-(2-hydroxybenzylidene)hydrazinyl)-2-oxo-N-phenylacetamide were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment. Mononuclear complexes are obtained with 1:1 molar ratio except [Mn(HOS)(2)(H(2)O)(2)] and [Co(OS)(2)](H(2)O)(2) complexes which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a monobasic bidentate one and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the carbonyl oxygen atom, azomethine nitrogen atom and the hydroxyl oxygen. Moreover, the ligand behaves as a dibasic tridentate and coordination occurs via the enolic oxygen, azomethine nitrogen and the hydroxyl oxygen atoms. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complexes possesses a square planar geometry. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes. The protonation constant of the ligand and the stability constant of metal complexes were determined pH-metrically in 50% (v/v) dioxane-water mixture at 298 K and found to be consistent with Irving-Williams order. Moreover, the minimal inhibitory concentration (MIC) of these compounds against Staphylococcus aureus, Escherechia coli and Candida albicans were determined.  相似文献   

14.
Weak metal-arene interactions have been investigated in Zn, Cd, Hg, and Ni complexes of meso-tetraaryl m- and p-benziporphyrin (1 and 2) and of the new compound, m-benziporphodimethene (3). Compounds 1-3 incorporate the phenylene moiety into a macrocyclic structure so as to facilitate the interaction between the arene and coordinated metal ion. X-ray studies performed on Cd(II) and Ni(II) complexes show that the arene fragment approaches the ion at a distance much shorter than the sum of van der Waals radii. In chloronickel(II) m-benziporphyrin, a weak agostic bond is actually formed. In the NMR spectra of the Cd(II) and Hg(II) species, unusual (1)H-M and (13)C-M scalar couplings have been observed that are transmitted directly between the metal and the arene. DFT calculations performed for two Cd(II) species and subsequent AIM analysis show that the accumulation of electron density between the metal and arene necessary to induce these couplings is fairly small and the interaction is steric in nature. In the paramagnetic Ni(II) complexes of 1 and 3, the agostic proton of the m-phenylene exhibits large downfield (1)H NMR shifts (386 and 208 ppm at 298 K, respectively). An agostic mechanism of spin density transfer is proposed to explain these shifts as resulting from electron donation from the CH bond to the metal. In chloronickel(II) p-benziporphyrin, the inner protons of the p-phenylene have a contrastingly small shift (0.0 ppm at 298 K), indicating that in this case the agostic interaction is inefficient, in agreement with the X-ray data.  相似文献   

15.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

16.
The geometries and energetics of complexes of Hg(II) and Pb(II) with sulfur‐ and aminopyridine‐containing chelating resin including crosslinked polystyrene immobilizing 2‐aminopyridine via sulfur‐containing (PVBS‐AP), sulfoxide‐containing (PVBSO‐AP), and sulfone‐containing (PVBSO2‐AP) spacer arms have been investigated theoretically, and thus interactions of the metal ions with chelating resins were evaluated. The results indicate that PVBS‐AP behaves as a tridentate ligand to coordinate with the metal ions by S and two N atoms to form chelating compounds with S atom playing a dominant role in the coordination, whereas PVBSO‐AP and PVBSO2‐AP interact with metal cations, respectively, in a tricoordinate manner by O and two N atoms forming chelating complexes. Furthermore, it is revealed that O and N2 atoms of PVBSO‐AP are the main contributor of coordination to Hg(II), whereas N2 atom of PVBSO2‐AP is mainly responsible for the coordination to Hg(II). For PVBSO‐AP‐Pb2+ and PVBSO2‐AP‐Pb2+ complex, the coordination is dominated by the synergetic effect of N1, N2, and O atoms. Natural bond orbital and second‐order perturbation analyses suggest that the charge transfer from the chelating resins to metal ions is mainly dominated by the interactions of lone pair of electrons of the donor atoms with the unoccupied orbitals of metal ions. Hg(II) complexes exhibit larger binding energies than the corresponding Pb(II) complexes, implying the chelating resins exhibit higher affinity toward Hg(II), which is consistent with the experimental results. Combined the theoretical and experimental results, further understanding of the structural information of the complexes and the coordination mechanism was achieved. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
The synthesis, characterization and diuretic activity of four new biologically active complexes of Mg(II) and VO(II) with bidentate Schiff base ligand acetazolamide–salicylaldimine (L) obtained from the inserted condensation of 5-acetamido-1,3,4-thiadiazole-2-sulphonamide (acetazolamide) with salicylaldehyde in a 1:1 molar ratio have been reported. Using this bidentate ligand complexes of Mg(II), Mn(II), Fe(II) and VO(II) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using elemental analysis, FT-IR, electronic spectra, TGA, mass, particle size analysis and molar conductance measurements. The elemental analysis data suggest the stoichiometry to be 1:2 [M:L]. The molar conductance measurements suggest non-electrolytic nature of the complexes. Infrared spectral data agreed with the coordination to the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. On the basis of spectral studies, octahedral geometry is suggested for Mg(II), Mn(II), Fe(II) and square pyramidal geometry is suggested for VO(II) complexes. The pure drug, synthesized ligand and metal(II) complexes were screened for their antimicrobial activities against Eschericia coli, Bacillus subtilis, Aspergillus niger and Aspergillus flavous. The results show that the metal complexes were more active than the ligand and pure drug against these microbial species as expected. The ligand and its Mg(II) complexes was screened for their diuretic activity also.  相似文献   

18.
Comba P  Lienke A 《Inorganic chemistry》2001,40(20):5206-5209
Approximative density-functional theory calculations indicate that the tetradentate ligand L (L = 2,4-bis-(2-pyridyl)-3,7-diaza-[3.3.1]-bicyclononane) enforces an unusual and strong binding of a co-ligand (substrate) to a copper(II) center. The co-ligand in [Cu(L)(Cl)](+) completes a square-pyramidal coordination around copper(II) and binds in the equatorial plane rather than on the apical position. This configuration is a stable geometric isomer for the model complex [Cu(NH3)2(imine)2(Cl)](+), but it is disfavored by approximately 10 kJ mol(-1) and not commonly observed for CuN4 chromophores with a monodentate co-ligand. The equatorial coordination increases the bond energy of the copper(II)-chloride bond by approximately 80 kJ mol(-1), and similar results are expected for other copper(II)-L-substrate complexes, some of which show strong catalytic activity or unusual stability. Despite the enforced configuration, L does not impose significant steric strain on the copper(II) center but is well preorganized for the Jahn-Teller labile ion in this unusual geometry. The preorganization extends to the orientation of the pyridine donors (torsion angle around the copper-pyridine bond), and this seems to be of importance in the reactivity of the copper-L complexes and their derivatives.  相似文献   

19.
Tryptophan-containing N-acetylated peptides AcTrp-Gly, AcTrp-Ala, AcTrp-Val, and AcTrp-ValOMe bind to platinum(II) and undergo selective hydrolytic cleavage of the C-terminal amide bond; the N-terminal amide bond remains intact. In acetone solution, bidentate coordination of the tryptophanyl residue via the C(3) atom of indole and the amide oxygen atom produces complexes of spiro stereochemistry, which are characterized by (1)H, (13)C, and (195)Pt NMR spectroscopy, and also by UV-vis, IR, and mass spectroscopy. Upon addition of 1 molar equiv of water, these complexes undergo hydrolytic cleavage. This reaction is as much as 10(4)-10(5) times faster in the presence of platinum(II) complexes than in their absence. The hydrolysis is conveniently monitored by (1)H NMR spectroscopy. We report the kinetics and mechanism for this reaction between cis-[Pt(en)(sol)(2)](2+), in which the solvent ligand is water or acetone, and AcTrp-Ala. The platinum(II) ion as a Lewis acid activates the oxygen-bound amide group toward nucleophilic attack of solvent water. The reaction is unimolecular with respect to the metal-peptide complex. Because the tryptophanyl fragment AcTrp remains coordinated to platinum(II) after cleavage of the amide bond, the cleavage is not catalytic. Added ligand, such as DMSO and pyridine, displaces AcTrp from the platinum(II) complex and regenerates the promoter. This is the first report of cleavage of peptide bonds next to tryptophanyl residues by metal complexes and one of the very few reports of organometallic complexes involving metal ions and peptide ligands. Because these complexes form in nonaqueous solvents, a prospect for cleavage of membrane-bound and other hydrophobic proteins with new regioselectivity has emerged.  相似文献   

20.
The interaction of two symmetrically branched tris-cyclam derivatives based on 1,3,5-trimethylenebenzene and phloroglucinol cores with nickel(II), copper(II), zinc(II) and cadmium(II) is reported. All four metal ions yield solid complexes in which the metal : ligand ratio is 3 : 1. For both ligand types, spectrophotometric titrations confirm the formation of nickel(II) and copper(II) complexes of similar 3 : 1 stoichiometry in dimethyl sulfoxide. Visible spectral, electrochemical, magnetic moment, ESR and NMR studies have been performed to probe the nature of the respective complexes. Where appropriate, the results from the above metal-ion studies are compared with those from parallel investigations in which the corresponding (substituted) mono-cyclam analogues were employed as the ligands. A structural determination employing a poorly diffracting crystal of the trinuclear nickel(II) complex of the tris-cyclam ligand incorporating a 1,3,5-trimethylenebenzene core was successfully carried out with the aid of a synchrotron radiation source. A nickel ion occupies each cyclam ring in a square-planar coordination arrangement, with each cyclam ring adopting the stable trans-III configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号