首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A double-layer liquid crystal (LC) lens array with composited dielectric layer is proposed. In our design, a spatially non-uniform electric field is generated between the strip electrodes, resulting in a gradient refractive index distribution in the LC layer. Since the upper and lower parts of the LC lens array both adopt a composite dielectric layer, the operation voltage of the LC lens array is effectively reduced. In terms of LC lenslet, the double-layer design doubles the phase difference between the centre and the periphery of the LC layer, thereby reducing the focal length of the LC lens array. In addition, the shortest focal length (~1.78 mm) of the LC lens array is obtained at V = 3.3 V, and the LC lens array has a large focusing range.  相似文献   

2.
ABSTRACT

A short-focus microlens array using dielectric layer and inhomogeneous electric field over a homogeneous nematic liquid crystal (LC) layer is proposed. The top substrate has a planar indium tin oxide (ITO) electrode which is coated on the inner surface. The bottom substrate has strip ITO electrodes which are embedded in the dielectric layers. The inhomogeneous electric field generates a required gradient refractive index profile within the LC layer which, in turn, causes the focusing effect. Due to the thinner LC layer (15 μm), the spherical aberration should be negligible. Moreover, the fabrication process of the proposed microlens array can be easily carried out because of the layer-by-layer configuration. The simulation results show that the focal length of the LC microlens can be continuously tuned from infinity to 0.988 mm with the change of applied voltage.  相似文献   

3.
Fan Chu  Hu Dou  Li-Lan Tian  Lei Li 《Liquid crystals》2013,40(8):1273-1279
A fast response (sub-milliseconds) and polarisation-independent blue-phase liquid crystal (BPLC) microlens array with periodical double layer electrodes using different dielectric layers is proposed. The bottom double layer electrodes are coated with transparent and different dielectric layers to generate linearly varying electric potential from the centre to the edge, while the top planar electrode iridium tin oxide (ITO) electrode has a constant potential. As a result, gradient vertical electric fields are generated, and a gradient refractive index profile is obtained. When the applied voltage is changed, the focal length of the BPLC microlens array can be tuned from ∞ to 12.05 mm while keep a low operating voltage (~35Vrms). Besides, the driving mode (simplification driving) and fabrication process (using printing method or mold-pressing method) of the BPLC microlens array is very simple. The simulation results show that the BPLC microlens array is insensitive to the polarisation of incident light while keeping parabolic-like phase profile.  相似文献   

4.
Abstract

A homogeneously aligned nematic liquid crystal cell with a hole-patterned electrode and with an indium-tin oxide (ITO-) coated counter-electrode has been prepared. A non-uniform electric field can be produced by the asymmetrical electrode structure. The liquid crystal director can be reoriented by applying a voltage across the electrodes, and this produces an axially symmetrical profile of the refractive index. This liquid crystal cell is expected to have a lens effect and so its optical properties have been investigated. The profile of the output light intensity was measured by using a detecting system with an optical fibre. Some relationships between the lens properties, the diameter of the hole and the thickness of the liquid crystal layer have been examined. The liquid crystal cell becomes a convex (converging) lens with a relatively low voltage. A focal length of several millimetres can be obtained by applying voltages of 3-4 V. As the applied voltage increases, the focal length becomes longer, and the cell changes to a concave (diverging) lens when a high voltage is applied (? 20 V). These properties are discussed from the viewpoint of the director orientation effects resulting from the non-uniform electric fields in the cell.  相似文献   

5.
A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes is proposed. A high dielectric constant layer helps to smoothen out the horizontal electric field and reduce the operating voltage. With gradient electrodes and a planar top electrode, gradient electric fields are generated and lens-like phase profile is obtained. When the applied voltage is changed, the focal length of the lens can be tuned from ∞ to 5.94 mm. Besides, the simulation results show that the lens is insensitive to polarisation while keeping parabolic-like profile.  相似文献   

6.
We propose a blue-phase liquid crystal (BPLC) lens array based on dual square ring-patterned electrodes. A high dielectric constant layer is used to smoothen out the horizontal electric field and reduce the operating voltage. By creating a potential difference between the dual square ring-patterned electrodes, gradient electric fields are generated and lens-like phase profile is obtained. Besides, the focal length of the BPLC lens is adjustable with voltage changes and all simulation results indicate that the BPLC lens array is polarisation-insensitive.  相似文献   

7.
Large-aperture liquid crystal (LALC) lens with hole-patterned electrodes possesses small lens power and high addressing voltage because of the thick dielectric layer inserted between the hole-patterned electrode and LC layer. With an embedded narrow floating ring electrode (FRE), the lens power and addressing voltage of the LALC lens could be effectively increased and decreased, respectively. In this study, we analyse the electro-optic performance of LALC lens upon variation of the diameter of the embedded FRE. Results reveal that the FRE diameter determines the electric-field distribution and hence the electro-optic behaviour of the LALC lens. The LALC lens with embedded 2-mm-diameter FRE has excellent lens properties, such as low aberration, high focal quality and modulation transfer function performance comparable with solid glass lens.  相似文献   

8.
Transmittance characteristics were studied as a function of cell gap for a homogeneously aligned liquid crystal (LC) cell driven by a fringe‐electric field—named fringe‐field switching (FFS) mode. The light efficiency of a conventional LC cell using in‐plane switching and twisted nematic modes, where the LC director is determined by competition between elastic energy and electrical energy, does not depend on cell gap as long as the cell retardation value remains the same; i.e. only dielectric torque contributes to the deformation of the LC director. However, the transmittance of the FFS mode is dependent on the cell gap such that it decreases as the cell gap decreases, although the cell retardation value remains the same. This unusual behaviour (unlike that of conventional LC cells) arises because in the device the elastic and dielectric torques have the role of determining the LC director, such that the driving voltage giving rise to maximum transmittance becomes strongly dependent on the electrode position when the cell gap is as small as 2?µm. In addition, the LCs at the centre of the pixel and common electrodes are not sufficiently twisted because of a competition between the two elastic forces, which tries to twist the LCs in plane and hold them in their initial state by surface anchoring.  相似文献   

9.
《Liquid crystals》2012,39(12):1790-1798
ABSTRACT

A simple transflective liquid crystal display with a vertically aligned cell using a composite dielectric layer is demonstrated. The top substrate has a top planar common electrode, two transparent dielectric layers with different dielectric constants are coated on the bottom planar pixel electrode to generate linearly varying electric potential from the transmissive region (T region) to the reflective region (R region), while two bumpy reflectors are coated under the bottom substrate. In this device, with the composite dielectric layer, the common and pixel electrodes generate a strong electric potential in the T region and a relatively weak electric potential in the R region. Consequently, the T and R regions accumulate the same electro-optical characteristics. The simulation results show that the display exhibits reasonably low operating voltage, high optical efficiency and well-matched voltage-dependent transmittance (VT) and reflectance (VR) curves. Besides, the driving mode and the fabrication process of the transflective liquid crystal display are fairly simple and it is suitable for mobile applications.  相似文献   

10.
A blue phase liquid crystal (BPLC) lens with multifunction using multi-electrode structure and a dielectric layer with high dielectric constant is proposed. The refractive index of the BPLC can be changed flexibly in different regions. Some functional or technical requirements such as switch between positive and negative lenses can be achieved. The lens reveals a good parabolic refractive index distribution and focus adjustment capacity simultaneously. The applied voltage on the electrodes is regular and computable. To decrease the applied voltage of the proposed lens with a large diameter, a drive-type adopted Fresnel lens is introduced.  相似文献   

11.
Atmospheric water surface discharge is a promising method for water treatment. The selection of discharge gap distance must take a pair of conflicting aspects into account: the chemical efficiency grows as the discharge gap distance decreases, while the spark breakdown voltage decreases as the gap distance decreases. To raise the spark breakdown voltage and the chemical efficiency of atmospheric pressure water surface discharge, resistive barrier discharge is introduced in this paper. Both the high voltage electrode and the ground electrode are suspended above water surface to form an electrode-water-electrode discharge system. The water layer plays the role of a resistive barrier which inhibits the growth rate of discharge current as voltage increases. Experiments conducted at different discharge gap distances and water conductivities indicate that both the spark breakdown voltage and the chemical efficiency are remarkably raised in comparison with traditional water surface discharge. After parameter optimization, the discharge reactor is scaled up with activated carbon fiber electrodes and advantages of water resistive barrier discharge are kept.  相似文献   

12.
ABSTRACT

To reduce the operating voltage and gamma shift of the nematic liquid crystal display (LCD), a single-domain-protruded fringe-field switching (PFFS) electrode structure is designed. In this work, a kind of nematic liquid crystal (NLC) is introduced firstly. Then, the operating voltage and gamma shift of the proposed PFFS LCD are investigated under various electrodes’ parameters. Besides, its light leakage and contrast ratio are also discussed. The results show that the operating voltage of the PFFS LCD is only 1.40 V, here the electrodes’ width is 2 μm and electrodes’ gap is 4 μm. The gamma shift of the PFFS LCD can be reduced to the indistinguishable level under various electrodes’ sizes, if the height of the insulation layer is proper. For contrast ratio, it is larger than 200:1 at full viewing-angle, and the zone of 500:1 covers 60° polar angle.  相似文献   

13.
We have studied cell gap-dependent driving voltage characteristics in a homogeneously aligned nematic liquid crystal (LC) cell driven by a fringe electric field, termed the fringe field switching (FFS) mode. The results show that for the FFS mode using a LC with positive dielectric anisotropy, the operating voltage decreases as the cell gap decreases, whereas it increases with a decreasing cell gap when using a LC with negative dielectric anisotropy. The difference between LCs is explained by simulation and experiment.  相似文献   

14.
We have studied cell gap-dependent driving voltage characteristics in a homogeneously aligned nematic liquid crystal (LC) cell driven by a fringe electric field, termed the fringe field switching (FFS) mode. The results show that for the FFS mode using a LC with positive dielectric anisotropy, the operating voltage decreases as the cell gap decreases, whereas it increases with a decreasing cell gap when using a LC with negative dielectric anisotropy. The difference between LCs is explained by simulation and experiment.  相似文献   

15.
A liquid crystal microlens obtained with a non-uniform electric field   总被引:1,自引:0,他引:1  
A homogeneously aligned nematic liquid crystal cell with a hole-patterned electrode and with an indium-tin oxide (ITO-) coated counter-electrode has been prepared. A non-uniform electric field can be produced by the asymmetrical electrode structure. The liquid crystal director can be reoriented by applying a voltage across the electrodes, and this produces an axially symmetrical profile of the refractive index. This liquid crystal cell is expected to have a lens effect and so its optical properties have been investigated. The profile of the output light intensity was measured by using a detecting system with an optical fibre. Some relationships between the lens properties, the diameter of the hole and the thickness of the liquid crystal layer have been examined. The liquid crystal cell becomes a convex (converging) lens with a relatively low voltage. A focal length of several millimetres can be obtained by applying voltages of 3-4 V. As the applied voltage increases, the focal length becomes longer, and the cell changes to a concave (diverging) lens when a high voltage is applied (≳ 20 V). These properties are discussed from the viewpoint of the director orientation effects resulting from the non-uniform electric fields in the cell.  相似文献   

16.
ABSTRACT

The two-dimensional graphene-honeycomb structure can interact with the liquid crystal’s (LC) benzene rings through π–π electron stacking. This LC–graphene interaction gives rise to a number of interesting physical and optical phenomena in the LC. In this paper, we present a combination of a review and original research of the exploration of novel themes of LC ordering at the nanoscale graphene surface and its macroscopic effects on the LC’s nematic and smectic phases. We show that monolayer graphene films impose planar alignment on the LC, creating pseudo-nematic domains (PNDs) at the surface of graphene. In a graphene-nematic suspension, these PNDs enhance the orientational order parameter, exhibiting a giant enhancement in the dielectric anisotropy of the LC. These anisotropic domains interact with the external electric field, resulting in a non-zero dielectric anisotropy in the isotropic phase as well. We also show that graphene flakes in an LC reduce the free ion concentration in the nematic media by an ion-trapping process. The reduction of mobile ions in the LC is found to have subsequent impacts on the LC’s rotational viscosity, allowing the nematic director to respond quicker on switching the electric field on and off. In a ferroelectric LC (smectic-C* phase), suspended graphene flakes enhance the spontaneous polarisation by improving the tilted smectic-C* ordering resulting from the π–π electron stacking. This effect accelerates the ferroelectric-switching phenomenon. Graphene can possess strain chirality due to a soft shear mode. This surface chirality of graphene can be transmitted into LC molecules exhibiting two types of chiral signatures in the LCs: an electroclinic effect (a polar tilt of the LC director perpendicular to, and linear in, an applied electric field) in the smectic-A phase, and a macroscopic helical twist of the LC director in the nematic phase. Finally, we show that a graphene-based LC cell can be fabricated without using any aligning layers and ITO electrodes. Graphene itself can be used as the electrodes as well as the aligning layers, obtaining an electro-optic effect of the LC inside the cell.  相似文献   

17.
We demonstrate a liquid crystal (LC) mode switched by mixed electric fields of in-plane and fringe fields, which are self-adjusted by adopting a bottom floating electrode for enhanced electro-optical properties. In our LC mode structure, conventional in-plane switching (IPS) electrodes are formed as pixel electrodes and common electrodes on an insulating layer and floating electrodes that are patterned per the sub-pixels. When the areas of the pixel and common electrodes are identical, the voltage of the bottom floating electrode is spontaneously determined to be half the value of the pixel voltage, which ideally generates symmetric fringe fields with both pixel and common electrodes. Due to the in-plane fields additionally generated between the pixel and common electrodes, the proposed LC structure operates by mixed-field switching (MFS), which shows higher transmittance than fringe-field switching (FFS) and IPS LC modes. Transmittance of the conventional FFS and IPS LC modes is highly sensitive to the in-plane electrode’s width (w) and spacing (l) condition, but the proposed MFS LC mode shows good transmittance without degradation with large variations of the in-plane electrode’s spacing-to-width ratio (l/w).  相似文献   

18.
A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure is proposed. In this design, the non-uniform electric field across the lens aperture is obtained by the modulation of the effective dielectric constant of an optical hidden layer. As the applied voltage varies from 0 to 150Vrms, the focal length of the lens can be tuned from ∞ to 16.6 mm. Simulation results show that this device has a parabolic-like profile and exhibits polarisation-independent property.  相似文献   

19.
Shielded sliding discharges are nanosecond streamer discharges which develop along a dielectric between metal foil electrodes, with one of the foils extended over the entire rear of the dielectric layer. The electrode configuration not only allowed rearranging discharges in parallel due to the decoupling effect of the metal layer, but also to modify the electric field distribution in such a way that components normal to the surface are enhanced, leading to an increased energy density in the discharge plasma. By varying the electrode gap, the applied voltage, and the repetition rate, it is shown that by keeping the average electric field constant, the discharge voltage can be reduced from tens of kV to values on the order of a few kV, but only at the expense of a reduced energy density of the plasma. Varying the repetition rate from 20 to 500 Hz resulted in a slightly reduced energy per pulse, likely caused by residual charges on the dielectric surface. Measurements of the NO conversion to NO2 and ozone synthesis in dry air showed that the conversion is only dependent on the energy density of the discharge plasma. Although reducing the pulse voltage from the tens of kV range to that of few kV, and possibly even lower, causes a reduction in energy density, this loss can be compensated for by increasing the electrode gap area. This and the possibility to form discharge arrays allows generating large volume discharge reactors for environmental applications, at modest pulsed voltages.  相似文献   

20.
A submicron light-emitting device (LED) was fabricated from lithographically fabricated parallel indium-tin oxide (ITO) finger electrodes (0.9 mum wide) separated by a 1.1 mum gap. A single layer of an amorphous (a) Ru(bpy)3(ClO4)2 film ( approximately 100 nm thick) was spin-coated on the electrode array. Ga:In or carbon paste was employed as a liftable upper contact electrode. Films ( approximately 1.5 mum thick) of single-crystal Ru(bpy)3(ClO4)2 (xyl) between two ITO electrodes in a sandwich cell were also prepared and produce electroluminescence. As with larger cells of this type, the high-resolution electroluminescence produced showed a high external efficiency ( approximately 3.4%), a low turn-on voltage (2.3 V), and reasonable stability. The single-crystal cells also behaved as photovoltaic devices and a short-circuit photocurrent was observed when they were irradiated without a bias voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号