首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract

Single crystal X-ray and neutron diffraction is essential for determining occupancies, positional as well as static and dynamic displacement parameters in crystalline matter by measuring Bragg, satellite or diffuse reflections. In our contribution a new low-temperature high pressure cell for neutron single crystal diffraction will be presented. It is designed to operate from a few K to ambient temperature in “orange” cryostats at pressures up to at least 3 GPa. We will present first neutron diffraction results obtained at E4/HMI Berlin and discuss the quality of the data and the significance of the results. A software package has been written (as a part of the PROMETHEUS system), which deals with the data reduction for both X-ray and neutron high pressure cell single crystal data. Likewise a data collection program has been developed for single crystal data collection on four-circle diffractometers using Merrill-Bassett cells. A series of single crystal experiments on H2O and D2O ice VI and KDP (KH2PO4) show that results of very high quality can be obtained routinely including even higher order terms in the atomic displacement parameters.  相似文献   

2.
Abstract

High pressure neutron diffraction using the Paris-Edinburgh cell has attracted considerable interest ever since it has been shown that full structural data can be obtained at pressures up to 10 GPa. In this paper we will focus on the current state of this technique. Specifically, we report on new experimental possibilities concerning: i) access to “ultrahigh” pressures beyond 20 GPa, ii) experiments at variable temperatures down to 100 K, and iii) experiments on single crystals in inelastic neutron scattering. Current attempts to increase the pressure and temperature range are discussed.  相似文献   

3.
Abstract

This paper reports developments to enable neutron diffraction at simultaneous high temperatures and pressures using the Paris-Edinburgh cell. These include a new design of a cell assembly with internal heating. One of the novel features of our system is the use of neutron radiographic methods for measurement of temperature. Fully refinable neutron diffraction patterns obtained by time of flight technique with our apparatus are found to be of comparable quality to previous high-pressure studies at ambient temperatures. In this paper we describe the procedures for the generation and measurement of pressure and temperature and illustrate the quality of the data which can be obtained. The present system may be used on a routine basis for experiments up to 7 GPa and temperature approaching 2000 K. Current attempts are discussed for extending these measurements to a wider domain of pressures and temperatures.  相似文献   

4.
Abstract

The design of a titanium-zirconium clamped cylinder-piston type pressure cell for neutron diffraction investigations under hydrostatic pressure up to 10 kbars without supports is described. It is the first time that Freon-11 has been used as a hydrostatic pressure transmitting medium. The following results carried out at the room temperature are presented: the discovery of the transition from I to 111 phase in a LiKSO4 single crystal and the results of the investigation on the influence of pressure upon the structure of the YBaCuO HTSC obtained by means of the powder diffraction method.  相似文献   

5.
6.
Abstract

A high pressure cell with profiled anvils for neutron diffraction investigations has been designed and tested. The matrices of the cell are made of alloyed aluminium oxide ceramic. The reliable working pressure range of the cell is up to 7 GPa at a sample volume of 64 mm3. The cell attenuates the neutron flux not more than four times, with the transmission of the cell very slightly depending on neutron wavelength.  相似文献   

7.
Abstract

Neutron diffraction was until recently confined to pressures below ~ 3 GPa. This restricted range has limited the high-pressure structural information that is available for a wide range of phenomena for which neutron diffraction is the technique of choice. But now the recently-developed Paris-Edinburgh cell can achieve pressures up to ~ 30 GPa with a sample volume large enough to allow accurate structural studies with neutrons. After a period of development of the neutron scattering techniques needed to obtain the best possible results using the cell, a variety of successful structural studies have been performed. These illustrate the value of neutron diffraction in important areas such as locating hydrogen and other low-Z atoms in structures, the measurement of accurate structural pressure dependence and the examination of the changes in atomic thermal motion with pressure.  相似文献   

8.
K. Knorr  W. Depmeier 《高压研究》2013,33(3-6):297-303
Abstract

Two piston/cylinder type pressure cells for neutron powder diffraction are presented. They provide a large sample volume and hence allow rapid data collection at moderate flux neutron sources. Structure refinements from the diffraction data are possible. The maximum attainable pressure is above 2 GPa for Ti/Zr zero-scattering pressure cylinders. Both cells may be equipped with a micro-furnace. This allows measurement up to 700 K, simultaneously to the application of pressure. The low temperature setup for the cell-I is presented which will allow experiments down to 1·5K.  相似文献   

9.
ABSTRACT

We have developed a technique for neutron diffraction experiments at pressures up to 40?GPa using a Paris-Edinburgh press at the PLANET beamline in J-PARC. To increase the maximum accessible pressure, the diameter of the dimple for sample chamber at the top of the sintered diamond anvils is sequentially reduced from 4.0?mm to 1.0?mm. As a result, the maximum pressure increased and finally reached 40?GPa. By combining this technique with the beam optics which defines the gauge volume, diffraction patterns sufficient for full-structure refinements are obtainable at such pressures.  相似文献   

10.
Abstract

The high pressure apparatus (HPA) up to 25kbar from TiZr alloy is presented. The short review of materials used for constructing the HPA for the neutron diffraction is given. It is shown that D2 may serve as the exellent calibrant for the quasihidrostatic pressure at low temperatures.  相似文献   

11.
Abstract

Phase transformations occurring in initially amorphous Zn41 Sb59 semiconductor at pressures to 10 GPa and temperatures to 350C were studied using the measurement of electrical resistance, in situ energy dispersive X-ray diffraction and neutron diffraction on quenched high-pressure phases at ambient pressure. The studied T- P region involves the regions of reversible and irreversible crystallisation and phase transitions between the equilibrium crystalline low-pressure and high-pressure phases.  相似文献   

12.
X-ray diffraction (XRD) experiments have been carried out on quartz-like GaPO4 at high pressure and room temperature. A transition to a high pressure disordered crystalline form occurs at 13.5 GPa. Slight heating using a YAG infrared laser was applied at 17 GPa in order to crystallize the phase in its stability field. The structure of this phase is orthorhombic with space group Cmcm. The cell parameters at the pressure of transition are a =7.306?, b =5.887? and c =5.124?. Received: 7 October 1997 / Received in final form: 17 November 1997 / Accepted: 18 November 1997  相似文献   

13.
We have studied the unusual low-temperature magnetic phase of Er2Ni2Pb using powder neutron diffraction measurements in zero field down to 460 mK. Our previous neutron diffraction experiments down to 1.5 K showed that magnetic Bragg reflections seen in Er2Ni2Pb can be indexed by several propagation vectors that partially coexist. All the incommensurate propagation vectors seemed to disappear in the low temperature limit. The present study, however, shows that reflections belonging to the propagation vector q’ = (0.47 0 1/2) do not disappear but remain present down to 460 mK. This highly unexpected result suggests that the magnetic structure described by this propagation vector might not be a simple sine-wave modulation. One interesting possibility here is a spin-slip structure as the ground state.  相似文献   

14.
Abstract

The experiments which were carried out showed the possibility of using a titanium-zirconium high pressure cell for small angle neutron scattering. We report on some curves measured by SANS with the help of this setup to illustrate the capabilities of the method.  相似文献   

15.
Single crystal magnetization measurements and powder neutron diffraction on tetragonal ErRu2Ge2 as well as anisotropy of the paramagnetic susceptibility and specific heat measurements on ErRu2Si2 are presented. Besides the huge crystal field contribution to the uniaxial anisotropy, which favors the basal plane, a strong in-plane anisotropy is evidenced. From these features and neutron diffraction experiments it is shown that magnetic structures of these materials are double-Q and accordingly non-colinear below their Néel temperature (5.2 and 6.0 K for Ge and Si based compounds, respectively). The magnetic structures induced during the metamagnetic processes are discussed. Received 24 December 1999  相似文献   

16.
Abstract

It was found out by means of neutron diffraction that “easy plain - easy axis” spin-reorientation transition takes place in FeBO3 under quasihydrostatic pressure of approximately 17 kbar at room temperature. This is a pressure analog of the Morin transition in hematite.  相似文献   

17.
Abstract

The crystal structure of Nd2CuO4 has been studied by neutron diffraction at pressure up to 5 Gpa. The volume compressibility value was determined as 5·6·10?3/Gpa. The decrease of positional parameter of neodymium at high pressure has been observed. This structural change is explained by pressure induced neodymium ions charge increase.  相似文献   

18.
Abstract

Time-of-flight method of neutron diffraction is applied for materials under high pressure and low temperature. Extra-scattering from the pressure cell is reduced by geometrical design and by shielding with boron-plastics. Temperature is controled by adjusting the supply of liquid nitrogen: Successive transformations with pressure are observed in heavy ice.  相似文献   

19.
Abstract

Vibrational spectra of NH4Br at high pressures up to 4·5GPa have been studied by means of incoherent inelastic neutron scattering using sapphire anvil high pressure cell technique. Libration mode splitting was investigated in the vicinity of the orientation phase transition (Ptr = 2·7 GPa) and this effect disappears if pressure is less or higher than Ptr. This effect is explained in terms of two-well asymmetric potential.  相似文献   

20.
The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials science, and earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at the Los Alamos Neutron Science Center (LANSCE) to conduct in situ high-PT neutron diffraction experiments. We have developed a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high P. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. More recently, we have developed high-P low-T gas/liquid cells in conjunction with neutron diffraction. These techniques enable in situ and real-time examination of gas uptake/release processes and allow accurate, time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equations of state, structural phase transitions, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation/decomposition kinetics of methane, CO2 and hydrogen hydrate clathrates, and hydrogen/CO2 adsorption of inclusion compounds such as metal–organic frameworks (MOFs). The aim of our research is to accurately map out phase relations and determine structural parameters (lattice constants, atomic positions, atomic thermal parameters, bond lengths, bond angles, etc.) in the PTX space. We are developing further high-PT technology with a new 2000-ton press, TAPLUS-2000, and a ZIA (Deformation-DIA type) cubic anvil package to routinely achieve pressures up to 20 GPa and temperatures up to 2000 K. The design of a dedicated high-P neutron beamline, LAPTRON, is also underway for simultaneous high-PT neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary sciences, particularly for theoretical/computational modeling/simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号