首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We consider systems of delay differential equations representing the models containing three cells with any time-delayed connections. Global stability, delay-independent and delay-dependent local stability are studied, the existence of local and global periodic solutions is investigated. We give the stability conditions, respectively, and show that the local periodic solutions can be extended globally after certain critical values of delay.  相似文献   

2.
We first establish a result giving conditions that certain undamped delay differential equations with almost periodic time dependence have unique almost periodic solutions. Using this result we obtain conditions that a second order scalar nonlinear delay differential equation with almost periodic forcing will have a unique almost periodic solution having saddle-type stability properties. These results use the method of averaging.

  相似文献   


3.
In this article, we study the reduced bifurcation equations of the nonlinear delay differential equations with periodic delays, which models the machine tool chatter with continuously modulated spindle speed to determine the periodic solutions and analyze the tool motion. Analytical results show both modest increase of stability and existence of periodic solutions close to the new stability boundary.  相似文献   

4.
The dynamics of a physiological control systems described by a first-order nonlinear delay differential equations are investigated. we proved that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the theory of normal form and center manifold. Global existence of periodic solutions are established using a global Hopf bifurcation result due to Wu [Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799–4838].  相似文献   

5.
The dynamics of a class of abstract delay differential equations are investigated. We prove that a sequence of Hopf bifurcations occur at the origin equilibrium as the delay increases. By using the theory of normal form and centre manifold, the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions is derived. Then, the existence of the global Hopf bifurcation of the system is discussed by applying the global Hopf bifurcation theorem of general functional differential equation.  相似文献   

6.
Under study are the systems of nonlinear delay differential equations with periodic coefficients of the linear terms. Some sufficient conditions for the asymptotic stability of the zero solution are established. We obtain the estimates that characterize the decay rate of solutions at infinity and describe the attraction sets of the zero solution.  相似文献   

7.
The dynamics of a Nicholson's blowflies equation with a finite delay are investigated. We prove that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the theory of normal form and center manifold. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu (Trans. Amer. Math. Soc. 350 (1998) 4799), and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney (J. Differential Equations 106 (1994) 27).  相似文献   

8.
This paper deals with a diffusive toxin producing phytoplankton‐zooplankton model with maturation delay. By analyzing eigenvalues of the characteristic equation associated with delay parameter, the stability of the positive equilibrium and the existence of Hopf bifurcation are studied. Explicit results are derived for the properties of bifurcating periodic solutions by means of the normal form theory and the center manifold reduction for partial functional differential equations. Numerical simulations not only agree with the theoretical analysis but also exhibit the complex behaviors such as the period‐3, 5, 6, 7, 8, 11, and 12 solutions, cascade of period‐doubling bifurcation in period‐2, 4, quasi‐periodic solutions, and chaos. The key observation is that time delay may control harmful algae blooms (HABs). Moreover, numerical simulations show that the chaotic states induced by the period‐doubling bifurcation are purely temporal, which is stationary in space and oscillatory in time. The investigations may provide some new insights on harmful phytoplankton blooms.  相似文献   

9.
In this paper we mainly study the existence of periodic solutions for a system of delay differential equations representing a simple two-neuron network model of Hopfield type with time-delayed connections between the neurons. We first examine the local stability of the trivial solution, propose some sufficient conditions for the uniqueness of equilibria and then apply the Poincaré-Bendixson theorem for monotone cyclic feedback delayed systems to establish the existence of periodic solutions. In addition, a sufficient condition that ensures the trivial solution to be globally exponentially stable is also given. Numerical examples are provided to support the theoretical analysis.  相似文献   

10.
In this paper we mainly study the existence of periodic solutions for a system of delay differential equations representing a simple two-neuron network model of Hopfield type with time-delayed connections between the neurons. We first examine the local stability of the trivial solution, propose some sufficient conditions for the uniqueness of equilibria and then apply the Poincaré–Bendixson theorem for monotone cyclic feedback delayed systems to establish the existence of periodic solutions. In addition, a sufficient condition that ensures the trivial solution to be globally exponentially stable is also given. Numerical examples are provided to support the theoretical analysis.  相似文献   

11.
We discuss the existence of periodic solutions to a system of differential equations with distributed delay which shows a certain type of symmetry. For this, such solutions are related to the solutions of a system of second-order ordinary differential equations.  相似文献   

12.
The purpose of this paper is to study a class of delay differential equations with two delays. first, we consider the existence of periodic solutions for some delay differential equations. Second, we investigate the local stability of the zero solution of the equation by analyzing the correlocal stability of the zero solution of the equation by analyzing the corresponding characteristic equation of the linearized equation. The exponential stability of a perturbed delay differential system with a bounded lag is studied. Finally, by choosing one of the delays as a bifurcation parameter, we show that the equation exhibits Hopf and saddle-node bifurcations.  相似文献   

13.
The stability of periodic solutions of partial differential equations has been an area of increasing interest in the last decade. In this paper, we derive all periodic traveling wave solutions of the focusing and defocusing mKdV equations. We show that in the defocusing case all such solutions are orbitally stable with respect to subharmonic perturbations: perturbations that are periodic with period equal to an integer multiple of the period of the underlying solution. We do this by explicitly computing the spectrum and the corresponding eigenfunctions associated with the linear stability problem. Next, we bring into play different members of the mKdV hierarchy. Combining this with the spectral stability results allows for the construction of a Lyapunov function for the periodic traveling waves. Using the seminal results of Grillakis, Shatah, and Strauss, we are able to conclude orbital stability. In the focusing case, we show how instabilities arise.  相似文献   

14.
Machine tool chatter has been characterized as isolated periodic solutions or limit cycles of delay differential equations. Determining the amplitude and frequency of the limit cycle is sometimes crucial to understanding and controlling the stability of machining operations. In Gilsinn [Gilsinn DE. Computable error bounds for approximate periodic solutions of autonomous delay differential equations, Nonlinear Dyn 2007;50:73–92] a result was proven that says that, given an approximate periodic solution and frequency of an autonomous delay differential equation that satisfies a certain non-criticality condition, there is an exact periodic solution and frequency in a computable neighborhood of the approximate solution and frequency. The proof required the estimation of a number of parameters and the verification of three inequalities. In this paper the details of the algorithms will be given for estimating the parameters required to verify the inequalities and to compute the final approximation errors. An application will be given to a Van der Pol oscillator with delay in the non-linear terms.  相似文献   

15.
It is acknowledged that coral reefs are globally threatened. P.J. Mumby et al. [10] constructed a mathematical model with ordinary differential equations to investigate the dynamics of coral reefs. In this paper, we first provide a detailed global analysis of the coral reef ODE model in [10]. Next we incorporate the inherent time delay to obtain a mathematical model with delay differential equations. We consider the grazing intensity and the time delay as focused parameters and perform local stability analysis for the coral reef DDE model. If the time delay is sufficiently small, the stability results remain the same. However, if the time delay is large enough, macroalgae only state and coral only state are both unstable, while they are both stable in the ODE model. Meanwhile, if the grazing intensity and the time delay are endowed some suitable values, the DDE model possesses a nontrivial periodic solution, whereas the ODE model has no nontrivial periodic solutions for any grazing rate. We study the existence and property of the Hopf bifurcation points and the corresponding stability switching directions.  相似文献   

16.
研究抽象空间中无穷时滞微分方程概自守解的存在性,证明了在正实轴上存在有界解蕴含存在概自守解,并给出了结论在L otka-V o lterra型方程中的应用.我们的结果推广了经典的关于非齐次线性概周期微分方程概周期解存在性的结论.  相似文献   

17.
研究一类具有时滞和Beddington-DeAngelis功能性反应的捕食模型的稳定性和Hopf分支.以滞量为参数,得到了系统正平衡点的稳定性和Hopf分支存在的充分条件.应用一般泛函微分方程的度理论,研究了该系统的全局Hopf分支的存在性.  相似文献   

18.
In this paper, we consider a neural network model consisting of two coupled oscillators with delayed feedback and excitatory-to-excitatory connection. We study how the strength of the connections between the oscillators affects the dynamics of the neural network. We give a full classification of all equilibria in the parameter space and obtain its linear stability by analyzing the characteristic equation of the linearized system. We also investigate the spatio-temporal patterns of bifurcated periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. Moreover, the stability and bifurcation direction of the bifurcated periodic solutions are obtained by employing center manifold reduction and normal form theory. Some numerical simulations are provided to illustrate the theoretical results.  相似文献   

19.
In this paper a system of three delay differential equations representing a Hopfield type general model for three neurons with two-way (bidirectional) time delayed connections between the neurons and time delayed self-connection from each neuron to itself is studied. Delay independent and delay dependent sufficient conditions for linear stability, instability and the occurrence of a Hopf bifurcation about the trivial equilibrium are addressed. The partition of the resulting parametric space into regions of stability, instability, and Hopf bifurcation in the absence of self-connection is realized. To extend the local Hopf branches for large delay values a particular bidirectional delayed tri-neuron model without self-connection is investigated. Sufficient conditions for global existence of multiple non-constant periodic solutions are obtained for such a model using the global Hopf-bifurcation theorem for functional differential equations due to J. Wu and the Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney, and following the approach developed by Wei and Li.  相似文献   

20.
In this paper, we are concerned with the existence of solutions of systems determined by abstract functional differential equations with infinite and state‐dependent delay. We establish the existence of mild solutions and the existence of periodic solutions. Our results are based on local Lipschitz conditions of the involved functions. We apply our results to study the existence of periodic solutions of a partial differential equation with infinite and state‐dependent delay. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号