首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider an N×N hermitian random matrix with independent entries, not necessarily Gaussian, a so-called Wigner matrix. It has been conjectured that the local spacing distribution, i.e. the distribution of the distance between nearest neighbour eigenvalues in some part of the spectrum is, in the limit as N→∞, the same as that of hermitian random matrices from GUE. We prove this conjecture for a certain subclass of hermitian Wigner matrices. Received: 21 June 2000 / Accepted: 26 July 2000  相似文献   

2.
《Nuclear Physics B》1998,532(3):733-752
The circular Dyson brownian motion model refers to the stochastic dynamics of the log-gas on a circle. It also specifies the eigenvalues of certain parameter-dependent ensembles of unitary random matrices. This model is considered with the initial condition that the particles are non-interacting (Poisson statistics). Jack polynomial theory is used to derive a simple exact expression for the density-density correlation with the position of one particle specified in the initial state, and the position of one particle specified at time τ, valid for all β > 0. The same correlation with two particles specified in the initial state is also derived exactly, and some special cases of the theoretical correlations are illustrated by comparison with the empirical correlations calculated from the eigenvalues of certain parameter-dependent Gaussian random matrices. Application to fluctuation formulas for time-displaced linear statistics in made.  相似文献   

3.
Number theorists have studied extensively the connections between the distribution of zeros of the Riemann ζ-function, and of some generalizations, with the statistics of the eigenvalues of large random matrices. It is interesting to compare the average moments of these functions in an interval to their counterpart in random matrices, which are the expectation values of the characteristic polynomials of the matrix. It turns out that these expectation values are quite interesting. For instance, the moments of order 2K scale, for unitary invariant ensembles, as the density of eigenvalues raised to the power K 2; the prefactor turns out to be a universal number, i.e. it is independent of the specific probability distribution. An equivalent behaviour and prefactor had been found, as a conjecture, within number theory. The moments of the characteristic determinants of random matrices are computed here as limits, at coinciding points, of multi-point correlators of determinants. These correlators are in fact universal in Dyson's scaling limit in which the difference between the points goes to zero, the size of the matrix goes to infinity, and their product remains finite. Received: 1 October 1999 / Accepted: 18 May 2000  相似文献   

4.
We present a version of the 1/n-expansion for random matrix ensembles known as matrix models. The case where the support of the density of states of an ensemble consists of one interval and the case where the density of states is even and its support consists of two symmetric intervals is treated. In these cases we construct the expansion scheme for the Jacobi matrix determining a large class of expectations of symmetric functions of eigenvalues of random matrices, prove the asymptotic character of the scheme and give an explicit form of the first two terms. This allows us, in particular, to clarify certain theoretical physics results on the variance of the normalized traces of the resolvent of random matrices. We also find the asymptotic form of several related objects, such as smoothed squares of certain orthogonal polynomials, the normalized trace and the matrix elements of the resolvent of the Jacobi matrices, etc. Received: 9 November 2000 / Accepted: 26 July 2001  相似文献   

5.
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar and Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives with positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of n random transfer matrices.  相似文献   

6.
We find the limit of the variance and prove the Central Limit Theorem (CLT) for the matrix elements φ jk (M), j,k=1,…,n of a regular function φ of the Gaussian matrix M (GOE and GUE) as its size n tends to infinity. We show that unlike the linear eigenvalue statistics Tr φ(M), a traditional object of random matrix theory, whose variance is bounded as n→∞ and the CLT is valid for Tr φ(M)−E{Tr φ(M)}, the variance of φ jk (M) is O(1/n), and the CLT is valid for . This shows the role of eigenvectors in the forming of the asymptotic regime of various functions (statistics) of random matrices. Our proof is based on the use of the Fourier transform as a basic characteristic function, unlike the Stieltjes transform and moments, used in majority of works of the field. We also comment on the validity of analogous results for other random matrices.  相似文献   

7.
We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.  相似文献   

8.
This paper is devoted to the rigorous proof of the universality conjecture of random matrix theory, according to which the limiting eigenvalue statistics ofn×n random matrices within spectral intervals ofO(n –1) is determined by the type of matrix (real symmetric, Hermitian, or quaternion real) and by the density of states. We prove this conjecture for a certain class of the Hermitian matrix ensembles that arise in the quantum field theory and have the unitary invariant distribution defined by a certain function (the potential in the quantum field theory) satisfying some regularity conditions.  相似文献   

9.
Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as universal approximators (neural networks). The eigenvalue spectrum is considered both numerically and analytically using previous work of Edelman et al. Based upon the numerical evidence, various conjectures are presented. The conclusion is that in many circumstances, most bifurcations from fixed points of large dynamical systems will be due to complex eigenvalues. Nevertheless, surprising situations are presented for which the aforementioned conclusion does not hold, e.g., real random matrices with Gaussian elements with a large positive mean and finite variance. PACS numbers: 05.45.−a, 05.45.Tp, 89.75.−k, 89.75.Fb  相似文献   

10.
We identify a solvable dynamical system — interpretable to some extent as a many-body problem — and point out that — for an appropriate assignment of its parameters — it is entirely isochronous, namely all its nonsingular solutions are completely periodic (i.e., periodic in all degrees of freedom) with the same fixed period (independent of the initial data). We then identify its equilibrium configurations and investigate its behavior in their neighborhood. We thereby identify certain matrices — of arbitrary order — whose eigenvalues are all rational numbers: a Diophantine finding.  相似文献   

11.
We continue the study of the Hermitian random matrix ensemble with external source where A has two distinct eigenvalues ±a of equal multiplicity. This model exhibits a phase transition for the value a=1, since the eigenvalues of M accumulate on two intervals for a>1, and on one interval for 0<a<1. The case a>1 was treated in Part I, where it was proved that local eigenvalue correlations have the universal limiting behavior which is known for unitarily invariant random matrices, that is, limiting eigenvalue correlations are expressed in terms of the sine kernel in the bulk of the spectrum, and in terms of the Airy kernel at the edge. In this paper we establish the same results for the case 0<a<1. As in Part I we apply the Deift/Zhou steepest descent analysis to a 3×3-matrix Riemann-Hilbert problem. Due to the different structure of an underlying Riemann surface, the analysis includes an additional step involving a global opening of lenses, which is a new phenomenon in the steepest descent analysis of Riemann-Hilbert problems.The first and third author are supported in part by INTAS Research Network NeCCA 03-51-6637 and by NATO Collaborative Linkage Grant PST.CLG.979738. The first author is supported in part by RFBR 05-01-00522 and the program “Modern problems of theoretical mathematics” RAS(DMS). The second author is supported in part by the National Science Foundation (NSF) Grant DMS-0354962. The third author is supported in part by FWO-Flanders projects G.0176.02 and G.0455.04 and by K.U.Leuven research grant OT/04/24 and by the European Science Foundation Program Methods of Integrable Systems, Geometry, Applied Mathematics (MISGAM) and the European Network in Geometry, Mathematical Physics and Applications (ENIGMA)  相似文献   

12.
Recently, a new approach, called a non-parametric model of random uncertainties, has been introduced for modelling random uncertainties in linear and non-linear elastodynamics in the low-frequency range. This non-parametric approach differs from the parametric methods for random uncertainties modelling and has been developed in introducing a new ensemble of random matrices constituted of symmetric positive-definite real random matrices. This ensemble differs from the Gaussian orthogonal ensemble (GOE) and from the other known ensembles of the random matrix theory. The present paper has three main objectives. The first one is to study the statistics of the random eigenvalues of random matrices belonging to this new ensemble and to compare with the GOE. The second one is to compare this new ensemble of random matrices with the GOE in the context of the non-parametric approach of random uncertainties in structural dynamics for the low-frequency range. The last objective is to give a new validation for the non-parametric model of random uncertainties in structural dynamics in comparing, in the low-frequency range, the dynamical response of a simple system having random uncertainties modelled by the parametric and the non-parametric methods. These three objectives will allow us to conclude about the validity of the different theories.  相似文献   

13.
We consider random Schrödinger operators of the form \({\Delta+\xi}\), where \({\Delta}\) is the lattice Laplacian on \({\mathbb{Z}^{d}}\) and \({\xi}\) is an i.i.d. random field, and study the extreme order statistics of the Dirichlet eigenvalues for this operator restricted to large but finite subsets of \({\mathbb{Z}^{d}}\). We show that, for \({\xi}\) with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class, and the corresponding eigenfunctions are exponentially localized in regions where \({\xi}\) takes large, and properly arranged, values. The picture we prove is thus closely connected with the phenomenon of Anderson localization at the spectral edge. Notwithstanding, our approach is largely independent of existing methods for proofs of Anderson localization and it is based on studying individual eigenvalue/eigenfunction pairs and characterizing the regions where the leading eigenfunctions put most of their mass.  相似文献   

14.
We investigate the statistical properties of the cross-correlation matrix between individual stocks traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the portfolio weights in the Markowitz portfolio theory. We find that the distribution of the cross-correlation matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original cross-correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The b473\beta_{473} coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT is approximately zero. Notably, we show that the entropy function E(s)E(\sigma) with the portfolio risk σ for the original and filtered cross-correlation matrices are consistent with a power-law function, E(σ) ~ s-g\sigma^{-\gamma}, with the exponent γ ~ 2.92 and those for Asian currency crisis decreases significantly.  相似文献   

15.
We consider an ensemble of Wigner symmetric random matrices An={aij}, i,j=1, . . . ,n with matrix elements aij, being i.i.d. symmetrically distributed random variables We assume that and that for p>18. We prove that the distribution of the k (k=1,2, . . . ) largest (smallest) eigenvalues has a universal limit as n→∞ (the Tracy-Widom distribution).  相似文献   

16.
The correlation functions of the random variables det(λ−X), in which X is an hermitian N×N random matrix, are known to exhibit universal local statistics in the large N limit. We study here the correlation of those same random variables for real symmetric matrices (GOE). The derivation relies on an exact dual representation of the problem: the k-point functions are expressed in terms of finite integrals over (quaternionic) k×k matrices. However the control of the Dyson limit, in which the distance of the various parameters λ's is of the order of the mean spacing, requires an integration over the symplectic group. It is shown that a generalization of the Itzykson–Zuber method holds for this problem, but contrary to the unitary case, the semi-classical result requires a finite number of corrections to be exact. We have also considered the problem of an external matrix source coupled to the random matrix, and obtain explicit integral formulae, which are useful for the analysis of the large N limit. Received: 19 March 2001 / Accepted: 21 June 2001  相似文献   

17.
Random contractions (subunitary random matrices) appear naturally when considering quantized chaotic maps within a general theory of open linear stationary systems with discrete time. We analyze statistical properties of complex eigenvalues of generic N × N random matrices  of such a type, corresponding to systems with broken time reversal invariance. Deviations from unitarity are characterized by rank MN and a set of eigenvalues 0<T i≤1, i=1,..., M of the matrix $\hat T = \hat 1 - \hat A^\dag \hat A$ . We solve the problem completely by deriving the joint probability density of N complex eigenvalues and calculating all n-point correlation functions. In the limit N?M, n, the correlation functions acquire the universal form found earlier for weakly non-Hermitian random matrices.  相似文献   

18.
Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices, respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s)eb(s) for a simply related to a Painlevé transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements).  相似文献   

19.
We prove the Central Limit Theorem (CLT) for the number of eigenvalues near the spectrum edge for certain Hermitian ensembles of random matrices. To derive our results, we use a general theorem, essentially due to Costin and Lebowitz, concerning the Gaussian fluctuation of the number of particles in random point fields with determinantal correlation functions. As another corollary of the Costin–Lebowitz Theorem we prove the CLT for the empirical distribution function of the eigenvalues of random matrices from classical compact groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号