首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Bulk material of Nb3 (Ge0.8Nb0.2) with A15 structure and a superconducting transition temperature Tc of 6.5 K has been implanted with Ge, Si, Ar and O ions and subsequently annealed at high temperatures. After annealing between 700 and 750°C the Ge implanted samples showed a strong increase in Tc up to 16.2 K. With Si ions only a Tc of 13 K was obtained, with Ar and O ions Tc remained below 9 K. From X-ray measurements carried out on high Tc Ge implanted samples it could be concluded that the implanted surface layer grows up to a high degree epitaxially on the single crystallites of the bulk material. The lattice constant a0 of the implanted film was reduced by 0.02 Å with respect to the bulk material. This reduction in a0 is stronger than expected from the transition temperature of the implanted surface layer.  相似文献   

2.
Nitrogen ions were implanted in GaAs1−xPx (x=0.4; 0.65) at room temperature at various doses from 5×1012 cm−2 to 5×1015 cm−2 and annealed at temperatures from 600°C up to 950°C using a sputtered SiO2 encapsulation to investigate the possibility of creating isoelectronic traps by ion implantation. Photoluminescence and channeling measurements were performed to characterize implanted layers. The effects of damage induced by optically inactive neon ion implantation on photoluminescence spectrum were also investigated. By channeling measurements it was found that damage induced by nitrogen implantation is removed by annealing at 800°C. A nitrogen induced emission intensity comparable to the intensity of band gap emission for unimplanted material was observed for implanted GaAs0.6P0.4 after annealing at 850°C, while an enhancement of the emission intensity by a factor of 180 as compared with an unimplanted material was observed for implanted GaAs0.35P0.65 after annealing at 950°C. An anomalous diffusion of nitrogen atoms was found for implanted GaAs0.6P0.4 after annealing at and above 900°C.  相似文献   

3.
Magnesium diboride (MgB2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature (Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate (Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB2 heterostructures using rather simple physical vapor deposition method such as sputtering.  相似文献   

4.
Backscattering yields of 1.5 MeV?He+ ions and low temperature photoluminescence (PL) spectra were measured in GaP crystals implanted with 200 keV?N+ ions as functions of ion-dose, temperature during implantation and annealing temperature after implantation. Backscattering results indicate that hot implantation at 500°C greatly reduces radiation damage. The PL intensities of NN lines become maximum in the sample implanted with N+ ions of 3 × 1014cm?2 at 500°C, and annealed at 1000°C for 1 hr with aluminum glass. The PL intensity is comparable to that of the nitrogen-doped sample during liquid phase epitaxy which is widely accepted as the best method of introducing nitrogen into GaP crystals. In the case of 500°C—hot implantation, the radiation damage produced during implantation is annealed out at 700 ~ 800°C and the implanted nitrogen substitutes for the phosphorous sites after annealing at 900 ~ 1000°C. Some kinds of defects or strains remain around the NN centers even in implanted samples with a maximum PL efficiency. These defects or strains don't seem to reduce the PL efficiency. In the case of room temperature implantation, PL efficiency decreases to one-hundredth or one-thousandth due to the formation of the non-crystalline state compared with hot implantation.  相似文献   

5.
Nitridated iron is a promising material for potential applications in permanent magnets. Recent work on stabilization of nitridated iron in a foil form through nitrogen ion implantation and annealing motivates to study effect of thermal annealing on the surface of nitrogen-implanted iron. In this work, we show effect of annealing on chemical state and magnetism of nitrogen implanted epitaxial iron films. It is observed that nitrogen in the lattices only stays at the lower temperatures than 450 °C. In addition, significant reduction and lattice modification are taken placed, when the film is annealed at 450 °C. The increases of saturation magnetization and coercivity, where it is annealed at 450 °C, are likely to be triggered by reduction of oxygen contents at the surface and thinning of Fe2O3.  相似文献   

6.
The electrical properties of cadmium, zinc, and sulfur ion-implanted layers in gallium arsenide have been measured by the van der Pauw-Hall technique. Ion implantation was performed with the substrates held at room temperature. The dependence of sheet resistivity, surface carrier concentration, and mobility on ion dose and on post-implantation anneal temperature was determined. In the case of 60 keV Cd+ ions implanted into n-type substrates, a measurable p-type layer resulted when samples were annealed for 10 minutes at a temperature in the range 600—900°C. After annealing at 300—900°C for 10 minutes, 100 per cent electrical activity of the Cd ions resulted for ion doses ≤ 1014/cm2.

The properties of p-type layers produced by implantation of 85 keV Zn+ ions were similar to those of the 60 keV cadmium-implanted layers, in that no measurable p-type behavior was observed in samples annealed below a relatively high temperature. However, in samples implanted with 20 keV Zn+ ions a p-type layer was observed after annealing for 10 minutes at temperatures as low as 300°C.

Implantation of sulfur ions into p-type GaAs substrates at room temperature resulted in the formation of a high resistivity n-type layer, evcn before any annealing was performed. Annealing at temperatures up to 200°C or above 600°C lowered the resistivity of the layer, while annealing in the range 300—500°C eliminated the n-type layer.  相似文献   

7.
Silicon samples have been boron implanted at 150 keV at liquid nitrogen temperature to a dose of 3.6 × 1015/cm2. This dose rendered the implanted layer amorphous as viewed by helium ion backscattering. Four kinds of room temperature measurements were made on the same set of samples as a function of the isochronal annealing temperature. The measurements made were the determination of the substitutional boron content by the channeling technique using the B11(p, α) nuclear reaction, observation of the disorder by helium ion backscattering, determination of the carrier concentration by van der Pauw Hall measurements, and the sheet resistivity by four point probe measurements. These measurements are compared with results from samples implanted at room temperature. The carrier concentration correlates well with the substitutional boron content for both room temperature and liquid nitrogen temperature implantations. Following annealing temperatures in the 600 to 800°C range, a much larger percentage of the boron lies on substitutional lattice sites, and therefore the carrier concentration is larger, if the implantation is done at liquid nitrogen temperature rather than at room temperature. Following liquid nitrogen temperature implantation, reverse annealing is observed from 600 to 800°C in the substitutional boron content, carrier concentration and sheet resistivity. The boron is more than 90 per cent substitutional after annealing to 1100°C for both the room temperature and liquid nitrogen temperature implantations. The low temperature implantation produced a buried amorphous layer, and this layer was observed to regrow from both the surface and substrate sides at approximately equal rates.  相似文献   

8.
Photoluminescence measurements at 77°K and Rutherford scattering of 450 keV protons were used to study radiation damage and annealing in ion implanted GaAs. The characteristic band edge luminescence (8225 Å) in GaAs is completely quenched by ion implantation. Photoluminescence measurements on samples which were isochronally annealed show a single annealing stage at 600°C. A luminescence peak at 9140 Å is introduced into the spectra of all implanted and annealed samples. This peak is attributed to an acceptor level created by As vacancies. The intensity of the peak is greatly reduced by protecting the surface of implanted layers with SiO2 during annealing. Rutherford scattering measurements on isochronally annealed samples reveal two annealing stages. A 300°C annealing stage is observed on samples which have an initial aligned yield less than random while a 650°C stage is observed on samples which have an initial aligned yield equal to random.  相似文献   

9.
Chromium ions implantation was performed into metal–organic chemical vapor deposition grown GaN thin film of thickness about 2 µm at 5 × 1016 cm?2 fluence. Implantation was performed at various substrate temperatures (RT, 250, 350 °C). Rapid thermal annealing was employed at 900 °C to remove implantation-induced damages as well as for activation of dopant. Structural study was performed by Rutherford backscattering and channeling spectrometry and high-resolution X-ray diffraction. To confirm magnetic properties at room temperature, hysteresis loops were obtained using alternating gradient magneto-meter. Well-defined hysteresis loops were achieved at 300 K in implanted and annealed samples. Temperature-dependent magnetization indicated magnetic moment at 5 K and retain up to 380 K.  相似文献   

10.
白培光  刘建 《物理学报》1991,40(11):1869-1874
Bi-Sr-Ca-Cu-O系中掺入适量的Sb,其高温相(110K相)含量明显多于不掺Sb样品。Sb具有加速高温相形成的作用。对于各义组分为Bi2-xSbxSr2Ca2.5Cu3.7Oy的样品,x=0.1最有利于高温相的形成。用液氮中淬火后低温回火的方法,发现在865℃烧结时样品中首先形成的是低温相(80K相),然后再逐渐转变为高温相。Tc值随烧结时间的延 关键词:  相似文献   

11.
The depth distribution profiles of sodium atoms in silicon upon high-voltage implantation (ion energy, 300 keV; implantation dose, 5 × 1014 and 3 × 1015 cm ?2) are investigated before and after annealing at temperatures in the range T ann = 300–900°C (t ann = 30 min). Ion implantation is performed with the use of a high-resistivity p-Si (ρ= 3–5 kΩ cm) grown by floating-zone melting. After implantation, the depth distribution profiles are characterized by an intense tail attributed to the incorporation of sodium atoms into channels upon their scattering from displaced silicon atoms. At an implantation dose of 3 × 1015 ions/cm2, which is higher than the amorphization threshold of silicon, a segregation peak is observed on the left slope of the diffusion profile in the vicinity of the maximum after annealing at a temperature T ann = 600°C. At an implantation dose of 5 × 1014 ions/cm2, which is insufficient for silicon amorphization, no similar peak is observed. Annealing at a temperature T ann = 700°C leads to a shift of the profile toward the surface of the sample. Annealing performed at temperatures T ann ≥ 800°C results in a considerable loss of sodium atoms due to their diffusion toward the surface of the sample and subsequent evaporation. After annealing, only a small number of implanted atoms that are located far from the region of the most severe damages remain electrically active. It is demonstrated that, owing to the larger distance between the diffusion source and the surface of the sample, the superficial density of electrically active atoms in the diffusion layer upon high-voltage implantation of sodium ions is almost one order of magnitude higher than the corresponding density observed upon low-voltage implantation (50–70 keV). In this case, the volume concentration of donors near the surface of the sample increases by a factor of 5–10. The measured values of the effective diffusion parameters of sodium at annealing temperatures in the range T ann = 525–900°C are as follows: D 0 = 0.018 cm2/s and E a = 1.29 eV/kT. These parameters are almost identical to those previously obtained in the case of low-voltage implantation.  相似文献   

12.
The structure and the electrical and magnetic properties of Mn-implanted Si, which exhibits ferromagnetic ordering at room temperature, are studied. Single-crystal n- and p-type Si wafers with high and low electrical resistivities are implanted by manganese ions to a dose of 5 × 1016 cm?2. After implantation and subsequent vacuum annealing at 850°C, the implanted samples are examined by various methods. The Mn impurity that exhibits an electric activity and is incorporated into the Si lattice in interstitial sites is found to account for only a few percent of the total Mn content. The main part of Mn is fixed in Mn15Si26 nanoprecipitates in the Si matrix. The magnetization of implanted Si is found to be independent of the electrical resistivity and the conductivity type of silicon and the type of implanted impurity. The magnetization of implanted Si increases slightly upon short-term postimplantation annealing and disappears completely upon vacuum annealing at 1000°C for 5 h. The Mn impurity in Si is shown to have no significant magnetic moment at room temperature. These results indicate that the room temperature ferromagnetism in Mn-implanted Si is likely to be caused by implantation-induced defects in the silicon lattice rather than by a Mn impurity.  相似文献   

13.
We report on the effect of external pressure on the superconducting transition temperature (Tc) of as‐grown and thermally treated single crystals of superconducting iron chalcogenide Rb0.85Fe1.9Se2. The superconducting transition temperature of 27.1 K at ambient pressure for the as‐grown sample was found to increase up to 33.2 K for the sample annealed for 3 h at 215 °C in vacuum. An increase of Tc up to 28.2 K was observed for the as‐grown sample at a pressure of 0.83 GPa. For all the studied crystals, annealed in the temperature range between 215 °C and 290 °C, the external pressure seems to decrease the superconducting transition temperature and a negative pressure coefficient of Tc was observed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The transition temperatures of Zr-Rh alloys with small amounts of Rh are essentially higher than the transition temperature of pure Zr. Rhodium is not dissolved in the Zr lattice. In the unannealed specimens Rh stabilizes the body centered cubic phase which has aT c of 6.4°K. After annealing an intermetallic compound is formed with aT c of about 12°K. This compound is also formed in the unannealed specimens at higher Rh content.  相似文献   

15.
In recent work, we have shown that chemically synthesized Sn1−xCoxO2 nanoscale powders with x≤0.01 are ferromagnetic at room temperature when prepared by annealing the reaction precipitate in the narrow temperature window of 350-600 °C. Combined high resolution x-ray photoelectron spectroscopy (on as-prepared and Ar+ ion sputtered samples), x-ray diffraction and magnetometry measurements showed that the Co distribution is more uniform throughout the individual Sn0.99Co0.01O2 particles when prepared at lower annealing temperatures of 350-600 °C and this uniform dopant distribution is essential to produce stable high temperature ferromagnetism. However, surface segregation of the dopant atoms in samples annealed at >600 °C destroys the room-temperature ferromagnetic behavior and reduces the Curie temperature to <300 K.  相似文献   

16.
Effects of annealing on the properties of P- and B-implanted Si for interdigitated back contact (IBC) solar cells were investigated with annealing temperature of from 950 to 1050 °C. P-implanted samples annealed at 950 °C were enough to activate dopants and recover the damage by implantation. As the annealing temperature was increased, the diode properties of P-implanted samples were degraded, while that of B-implanted samples were improved. However, in order to activate an implanted B ion, B-implanted samples needed an annealing of above 1000 °C. The implied Voc of lifetime samples by quasi-steady-state photoconductance decay followed the trend of diode properties on annealing temperature. Finally, IBC cell was fabricated with a two-step annealing at 1050 °C for B of the emitter and 950 °C for P of the front and back surface fields. The IBC cell had Voc of 618 mV, Jsc of 35.1 mA/cm2, FF of 78.8%, and the efficiency of 17.1% without surface texturing.  相似文献   

17.
The distribution of hyperfine fields (HF) is obtained at room temperature for Fe37.5Ni37.5Cr5Mo2Si10B8 annealed at temperatures between 641 K and 744 K. P(H,T) is also derived for samples annealed at 744 K for over 70 hours. Three steps are noted in the evolution of the crystalline phases: (1) separation of ∼ 35% of Fe atoms into environments with low and high HF's, with increase in Tc for the remainder (2) nearly complete separation of the P(H) into these two components on further annealing at a higher temperature and (3) at yet higher annealing temperatures, conversion of the high field phase into one with a lower HF. The observations are tentatively explained in terms of preferential presence of Cr in one of the phases and its subsequent migration into the other phase.  相似文献   

18.
We report on the defect properties of single-crystalline ZnO nanorods grown from solutions at temperatures below 90 °C. The nanorods can easily be doped by providing impurity precursors during growth. In the as-grown state the nanorods exhibit considerable lattice strain and distortions which compromise their electrical and optical properties. Upon annealing at moderate temperatures of <400 °C the lattice strain is converted into dislocation-type defects, and the dopant impurities become optically active. In the annealed state the near-bandgap photoluminescence quantum efficiency is improved more than 5 times and reaches ~16 % at room temperature. Thus with moderate annealing, interesting device applications become feasible for nanorods grown at T<90 °C.  相似文献   

19.
Minority carrier lifetimes in nitrogen implanted GaAs1-x P x (x=0.4; 0.65) were measured at 77K by an optical phase shift method as a function of nitrogen dose and annealing temperature in order to investigate the dependence of the lifetime on the concentration of nitrogen isoelectronic traps. A large increase in the lifetime was observed after nitrogen implantation followed by annealing at and above 800°C. The maximum lifetimes were 22ns for GaAs0.35P0.65 and 6.7 ns for GaAs0.6P0.4. They were obtained by implantation to a dose of 5×1013 cm?2 in GaAs0.35P0.65 and 1013 cm?2 in GaAs0.6P0.4. The lifetime after nitrogen implantation followed by annealing was longer by a factor of 6–7 than that of the unimplanted sample.  相似文献   

20.
Samples of YBa2Cu3O7-δ in which concentration of oxygen was varied by annealing at different temperatures between 200 and 900C followed by quenching to 77 K have been investigated by carrying out measurements of oxygen stoichiometry, room temperature resistivity, superconductivity and crystal structure. It is shown that the overall oxygen stoichiometry alone does not adequately characterize the superconducting and normal state behaviour;T c, ΔT cand room temperature resistivity also vary with the heat treatment conditions. This implies a dependence of the physical properties on the details of the distribution of the oxygen atoms. The results show a definite correlation betweenT cand resistivity hitherto not reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号