首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen–Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.  相似文献   

2.
3.
Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian solvent (Phys. Rev. E 71, 036707 (2005)). An improved formulation called the “Smoothed Profile (SP) method” is presented here in which simultaneous time-marching is used for the host fluid and colloids. The SP method is a direct numerical simulation of particulate flows and provides a coupling scheme between the continuum fluid dynamics and rigid-body dynamics through utilization of a smoothed profile for the colloidal particles. Moreover, the improved formulation includes an extension to incorporate multi-component fluids, allowing systems such as charged colloids in electrolyte solutions to be studied. The dynamics of the colloidal dispersions are solved with the same computational cost as required for solving non-particulate flows. Numerical results which assess the hydrodynamic interactions of colloidal dispersions are presented to validate the SP method. The SP method is not restricted to particular constitutive models of the host fluids and can hence be applied to colloidal dispersions in complex fluids.  相似文献   

4.
We present the Flowfield Dependent Variation (FDV) method for physical applications that have widely varying spatial and temporal scales. Our motivation is to develop a versatile numerical method that is accurate and stable in simulations with complex geometries and with wide variations in space and time scales. The use of a finite element formulation adds capabilities such as flexible grid geometries and exact enforcement of Neumann boundary conditions. While finite element schemes are used extensively by researchers solving computational fluid dynamics in many engineering fields, their use in space physics, astrophysical fluids and laboratory magnetohydrodynamic simulations with shocks has been predominantly overlooked. The FDV method is unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in these regimes. The first part of this paper concentrates on the presentation of our numerical method formulation for Newtonian and relativistic hydrodynamics. In the second part we present several standard simulation examples that test the method’s limitations and verify the FDV method. We show that our finite element formulation is stable and accurate for a range of both Mach numbers and Lorentz factors in one-dimensional test problems. We also present the converging/diverging nozzle which contains both incompressible and compressible flow in the flowfield over a range of subsonic and supersonic regions. We demonstrate the stability of our method and the accuracy by comparison with the results of other methods including the finite difference Total Variation Diminishing method. We explore the use of FDV for both non-relativistic and relativistic fluids (hydrodynamics) with strong shocks in order to establish the effectiveness in future applications of this method in astrophysical and laboratory plasma environments.  相似文献   

5.
6.
We report on the numerical simulation of a two-fluid magnetohydrodynamics problem arising in the industrial production of aluminium. The motion of the two non-miscible fluids is modeled through the incompressible Navier–Stokes equations coupled with the Maxwell equations. Stabilized finite elements techniques and an arbitrary Lagrangian–Eulerian formulation (for the motion of the interface separating the two fluids) are used in the numerical simulation. With a view to justifying our strategy, details on the numerical analysis of the problem, with a special emphasis on conservation and stability properties and on the surface tension discretization, as well as results on tests cases are provided. Examples of numerical simulations of the industrial case are eventually presented.  相似文献   

7.
We develop, analyze and validate a new method for simulating fluid–structure interactions (FSIs), which is based on fictitious mass and fictitious damping in the structure equation. We employ a partitioned method for the fluid and structure motions in conjunction with sub-iteration and Aitken relaxation. In particular, the use of such fictitious parameters requires sub-iterations in order to reduce the induced error in addition to the local temporal truncation error. To this end, proper levels of tolerance for terminating the sub-iteration procedure have been obtained in order to recover the formal order of temporal accuracy. For the coupled FSI problem, these fictitious terms have a significant effect, leading to better convergence rate and hence substantially smaller number of sub-iterations. Through analysis we identify the proper range of these parameters, which we then verify by corresponding numerical tests. We implement the method in the context of spectral element discretization, which is more sensitive than low-order methods to numerical instabilities arising in the explicit FSI coupling. However, the method we present here is simple and general and hence applicable to FSI based on any other discretization. We demonstrate the effectiveness of the method in applications involving 2D vortex-induced vibrations (VIV) and in 3D flexible arteries with structural density close to blood density. We also present 3D results for a patient-specific aneurysmal flow under pulsatile flow conditions examining, in particular, the sensitivity of the results on different values of the fictitious parameters.  相似文献   

8.
The results of statistical analysis of simulation data obtained from long time integrations of geophysical fluid models greatly depend on the conservation properties of the numerical discretization used. This is illustrated for quasi-geostrophic flow with topographic forcing, for which a well established statistical mechanics exists. Statistical mechanical theories are constructed for the discrete dynamical systems arising from three discretizations due to Arakawa [Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1 (1966) 119–143] which conserve energy, enstrophy or both. Numerical experiments with conservative and projected time integrators show that the statistical theories accurately explain the differences observed in statistics derived from the discretizations.  相似文献   

9.
The results of statistical analysis of simulation data obtained from long time integrations of geophysical fluid models greatly depend on the conservation properties of the numerical discretization used. This is illustrated for quasi-geostrophic flow with topographic forcing, for which a well established statistical mechanics exists. Statistical mechanical theories are constructed for the discrete dynamical systems arising from three discretizations due to Arakawa [Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1 (1966) 119–143] which conserve energy, enstrophy or both. Numerical experiments with conservative and projected time integrators show that the statistical theories accurately explain the differences observed in statistics derived from the discretizations.  相似文献   

10.
We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N\geqslant2N\geqslant2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.  相似文献   

11.
A fourth-order numerical method for the zero-Mach-number limit of the equations for compressible flow is presented. The method is formed by discretizing a new auxiliary variable formulation of the conservation equations, which is a variable density analog to the impulse or gauge formulation of the incompressible Euler equations. An auxiliary variable projection method is applied to this formulation, and accuracy is achieved by combining a fourth-order finite-volume spatial discretization with a fourth-order temporal scheme based on spectral deferred corrections. Numerical results are included which demonstrate fourth-order spatial and temporal accuracy for non-trivial flows in simple geometries.  相似文献   

12.
13.
We introduce provably unconditionally stable mixed variational methods for phase-field models. Our formulation is based on a mixed finite element method for space discretization and a new second-order accurate time integration algorithm. The fully-discrete formulation inherits the main characteristics of conserved phase dynamics, namely, mass conservation and nonlinear stability with respect to the free energy. We illustrate the theory with the Cahn–Hilliard equation, but our method may be applied to other phase-field models. We also propose an adaptive time-stepping version of the new time integration method. We present some numerical examples that show the accuracy, stability and robustness of the new method.  相似文献   

14.
周春华 《计算物理》2004,21(5):401-407
首先,简单介绍了基于粘接元的无重叠区域分裂方法.这种方法利用变分原理,非常适合有限元近似.然后,着重讨论了这种区域分裂方法在求解不可压Navier-Stokes方程中的应用,具体包括等价变分公式的建立、通过算子分裂的时间离散、区域分裂情形下广义Stokes问题的共轭梯度迭代求解方法、空间的有限元离散.最后,以数值实验结果验证了这种区域分裂方法应用于不可压Navier-Stokes方程求解时的可靠性.  相似文献   

15.
刘世兴  刘畅  郭永新 《中国物理 B》2011,20(3):34501-034501
The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.  相似文献   

16.
A numerical method in which the Rankine–Hugoniot condition is enforced at the discrete level is developed. The simple format of central discretization in a finite volume method is used together with the jump condition to develop a simple and yet accurate numerical method free of Riemann solvers and complicated flux splittings. The steady discontinuities are captured accurately by this numerical method. The basic idea is to fix the coefficient of numerical dissipation based on the Rankine–Hugoniot (jump) condition. Several numerical examples for scalar and vector hyperbolic conservation laws representing the inviscid Burgers equation, the Euler equations of gas dynamics, shallow water equations and ideal MHD equations in one and two dimensions are presented which demonstrate the efficiency and accuracy of this numerical method in capturing the flow features.  相似文献   

17.
徐骁  高志明  戴自换 《计算物理》2020,37(4):403-412
在Z箍缩驱动ICF过程中,磁场流体耦合作用是其整个物理过程中非常重要的部分.针对Z箍缩过程中多介质、大变形的特点,发展了三维相容拉氏理想磁流体交错型以及单元中心型格式,两种格式均具有一阶时间与空间精度.通过数值算例,验证其精度和强壮性,并比较分析两种格式的特点.  相似文献   

18.
The Galerkin projection procedure for construction of reduced order models of compressible flow is examined as an alternative discretization of the governing differential equations. The numerical stability of Galerkin models is shown to depend on the choice of inner product for the projection. For the linearized Euler equations, a symmetry transformation leads to a stable formulation for the inner product. Boundary conditions for compressible flow that preserve stability of the reduced order model are constructed. Preservation of stability for the discrete implementation of the Galerkin projection is made possible using a piecewise-smooth finite element basis. Stability of the reduced order model using this approach is demonstrated on several model problems, where a suitable approximation basis is generated using proper orthogonal decomposition of a transient computational fluid dynamics simulation.  相似文献   

19.
An algebraic variational multiscale–multigrid method is proposed for large-eddy simulation of turbulent variable-density flow at low Mach number. Scale-separating operators generated by level-transfer operators from plain aggregation algebraic multigrid methods enable the application of modeling terms to selected scale groups (here, the smaller of the resolved scales) in a purely algebraic way. Thus, for scale separation, no additional discretization besides the basic one is required, in contrast to earlier approaches based on geometric multigrid methods. The proposed method is thoroughly validated via three numerical test cases of increasing complexity: a Rayleigh–Taylor instability, turbulent channel flow with a heated and a cooled wall, and turbulent flow past a backward-facing step with heating. Results obtained with the algebraic variational multiscale–multigrid method are compared to results obtained with residual-based variational multiscale methods as well as reference results from direct numerical simulation, experiments and LES published elsewhere. Particularly, mean and various second-order velocity and temperature results obtained for turbulent channel flow with a heated and a cooled wall indicate the higher prediction quality achievable when adding a small-scale subgrid-viscosity term within the algebraic multigrid framework instead of residual-based terms accounting for the subgrid-scale part of the non-linear convective term.  相似文献   

20.
The goal of this paper is to present high-order cell-centered schemes for solving the equations of Lagrangian gas dynamics written in cylindrical geometry. A node-based discretization of the numerical fluxes is obtained through the computation of the time rate of change of the cell volume. It allows to derive finite volume numerical schemes that are compatible with the geometric conservation law (GCL). Two discretizations of the momentum equations are proposed depending on the form of the discrete gradient operator. The first one corresponds to the control volume scheme while the second one corresponds to the so-called area-weighted scheme. Both formulations share the same discretization for the total energy equation. In both schemes, fluxes are computed using the same nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The control volume scheme is conservative for momentum, total energy and satisfies a local entropy inequality in its first-order semi-discrete form. However, it does not preserve spherical symmetry. On the other hand, the area-weighted scheme is conservative for total energy and preserves spherical symmetry for one-dimensional spherical flow on equi-angular polar grid. The two-dimensional high-order extensions of these two schemes are constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess these new schemes. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号