首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bioelectronic interfaces that facilitate electron transfer between the electrode and a dehydrogenase enzyme have potential applications in biosensors, biocatalytic reactors, and biological fuel cells. The secondary alcohol dehydrogenase (2° ADH) from Thermoanaerobacter ethanolicus is especially well suited for the development of such bioelectronic interfaces because of its thermostability and facile production and purification. However, the natural cofactor for the enzyme, β-nicotinamide adenine dinucleotide phosphate (NADP+), is more expensive and less stable than β-nicotinamide adenine dinucleotide (NAD+). PCR-based, site-directed mutagenesis was performed on 2° ADH in an attempt to adjust the cofactor specificity toward NAD+ by mutating Tyr218 to Phe (Y218F 2° ADH). This mutation increased the K m(app) for NADP+ 200-fold while decreasing the K m(app) for NAD+ 2.5-fold. The mutant enzyme was incorporated into a bioelectronic interface that established electrical communication between the enzyme, the NAD+, the electron mediator toluidine blue O (TBO), and a gold electrode. Cyclic voltammetry, impedance spectroscopy, gas chromatography, mass spectrometry, constant potential amperometry, and chronoamperometry were used to characterize the mutant and wild-type enzyme incorporated in the bioelectronic interface. The Y218F 2° ADH exhibited a fourfold increase in the turnover ratio compared to the wild type in the presence of NAD+. The electrochemical and kinetic measurements support the prediction that the Rossmann fold of the enzyme binds to the phosphate moiety of the cofactor. During the 45 min of continuous operation, NAD+ was electrically recycled 6.7 × 104 times, suggesting that the Y218F 2° ADH-modified bioelectronic interface is stable.  相似文献   

2.
Two different self‐contained ethanol amperometric biosensors incorporating layered [Ru(phend)2bpy]2+‐intercalated zirconium phosphate (ZrP) as the mediator as well as yeast‐alcohol dehydrogenase (y‐ADH) and its cofactor nicotinamide adenine dinucleotide (NAD+) were constructed to improve upon a design previously reported where only this mediator was immobilized in the surface of a modified electrode. In the first biosensor, a [Ru(phend)2bpy]2+‐intercalated ZrP modified carbon paste electrode (CPE) was improved by immobilizing in its surface both y‐ADH and NAD+ using quaternized Nafion membrane. In the second biosensor, a glassy carbon electrode was modified with [Ru(phend)2bpy]2+‐intercalated ZrP, y‐ADH, and NAD+ using Nafion as the holding matrix. Calibration plots for ethanol sensing were constructed in the presence and absence of ZrP. In the absence of ZrP in the surface of the modified glassy carbon electrode, leaching of ADH was observed as detected by UV‐vis spectrophotometry. Ethanol sensing was also tested in the presence and absence of ascorbate to measure the selectivity of the sensor for ethanol. These two ethanol biosensors were compared to a previously reported one where the y‐ADH and the NAD+ were in solution, not immobilized.  相似文献   

3.
The use of immobilized enzymes has opened the possibility of large scale utilization of NAD+-linked dehydrogenases, but the applications of this technique were limited by the necessity of providing the large amounts of NAD+ required by its stoichiometric consumption in the reaction. After immobilization of alcohol dehydrogenase and intactE. coli by glutaraldehyde in the presence of serum albumin, the respiratory chain was found to be capable of regenerating NAD+ from NADH. This NAD+ can be recycled at least 100 times, and thus the method is far more effective than any other, and, moreover, does not require NADH oxydase purification. The total NADH oxidase activity recovered was 10–30% of the initial activity. Although, NADH is unable to cross the cytoplasmic membrane, it was able to reach the active site of NADH dehydrogenase after immobilization. The best yield of NADH oxidase activity with immobilized bacteria was obtained without prior treatment of the bacteria to render them more permeable. The denaturation by heat of NADH oxidase in cells that are permeabilized was similar before and after immobilization. In contrast, the heat denaturation of soluble Β-galactosidase required either a higher temperature or a longer exposure after immobilization. The sensitivity of immobilized NADH oxidase to denaturation by methanol was decreased compared to permeabilized cells. As a result, it is clear that the system can function in the presence of methanol, which is necessary as a solvent for certain water insoluble substrates.  相似文献   

4.
A ferrocene-labeled high molecular weight cofactor derivative (PEI-Fc-NAD) was prepared by attaching both ferrocene and nicotinamide adenine dinucleotide (NAD+) to a water soluble polyelectrolyte, polyethylenimine (PEI). Approximately 9.8% and 2.9% of all the primary amino groups of PEI were coupled with ferrocene and the bioactive cofactor, respectively. The cyclic voltammograms of PEI-Fc-NAD exhibited a one-electron transfer process, and the difference between the anodic and cathodic peak potential was found to be 80 mV. The PEI-Fc-NAD was used together with NAD-dependent dehydrogenase to construct a reagentless biosensor. An NAD-dependent alcohol dehydrogenase (ADH) was selected as the model enzyme, and both ADH and PEI-Fc-NAD were retained onto the sensing area of gold electrodes by a dialysis membrane or immobilized by layer-by-layer adsorption method. In both cases, the modified electrodes showed current response to ethanol without the addition of native NAD+ to the system, which suggested that the electrical communication between ADH and the electrode was achieved through PEI-Fc-NAD. In summary, PEI-Fc-NAD provides a new way for immobilization of mediator and cofactor, and exhibits the potential as a platform for constructing reagentless NAD-dependent dehydrogenase biosensors.  相似文献   

5.
L-lactate dehydrogenase (LDH) catalyzes the interconversion of an oxoacid (pyruvate) and hydroxy-acid (lactate) using the NADH/NAD+ pair as a redox cofactor. The enzyme has a commercial significance, as it can be used to produce chiral building blocks for the synthesis of key pharmaceuticals and agrochemicals. However, the substrate inhibition which is due to an abortive NAD+-pyruvate complex reducing the steady state concentration of functional LDH limits its use in industry. This substrate inhibition can be overcome by weaking the binding of NAD+. The conserved aspartic acid residue at position 38 was replaced by the longer basic arginine side chain (D38R) using PCR based overlap extension mutagenesis technique in the hope of weakening NAD+-binding. The mutant gene was overexpressed in theEscherichia coli high-expression vector pKK223-3 in JM105 cells; then, the mutant protein was produced. Comparing the effect of substrate inhibition in the arginine-38 mutant with wild-type, substrate inhibition is decreased threefold.  相似文献   

6.
He X  Ni X  Wang Y  Wang K  Jian L 《Talanta》2011,83(3):937-942
An electrochemical method for nicotinamide adenine dinucleotide (NAD+) detection with high sensitivity and selectivity has been developed by using molecular beacon (MB)-like DNA and Escherichia coli DNA ligase. In this method, MB-like DNA labeled with 5′-SH and 3′-biotin was self-assembled onto a gold electrode in its duplex form by means of facile gold-thiol chemistry, which resulted in blockage of electronic transmission. It was eT OFF state. In the presence of NAD+, E. coli DNA ligase was activated, and the two nucleotide fragments which were complementary to the loop of the MB-like DNA could be ligated by the NAD+-dependent E. coli DNA ligase. Hybridization of the ligated DNA with the MB-like DNA induced a large conformational change in this surface-confined DNA structure, which in turn pushed the biotin away from the electrode surface and made the electrons exchange freely with the electrode. Then the generated electrochemical signals can be measured by differential pulse voltammetry (DPV). Under optimized conditions, a linear response to logarithmic concentration of NAD+ range from 3 nM to 5 μM and a detection limit of 1.8 nM were obtained. Furthermore, the proposed strategy had sufficient selectivity to discriminate NAD+ from its analogues.  相似文献   

7.
An enzymatic method for determining L-malic acid in wine based on an L-malate sensing layer with nicotinamide adenine dinucleotide (NAD+), L-malate dehydrogenase (L-MDH) and diaphorase (DI), immobilized by sol-gel technology, was constructed and evaluated. The sol-gel glass was prepared with tetramethoxysilane (TMOS), water and HCl. L-MDH catalyzes the reaction between L-malate and NAD+, producing NADH, whose fluorescence (λ exc = 340 nm, λ em = 430 nm) could be directly related to the amount of L-malate. NADH is converted to NAD+ by applying hexacyanoferrate(III) as oxidant in the presence of DI. Some parameters affecting sol-gel encapsulation and the pH of the enzymatic reaction were studied. The sensing layer has a dynamic range of 0.1–1.0 g/L of L-malate and a long-term storage stability of 25 days. It exhibits acceptable reproducibility [s r(%)≈10] and allows six regenerations. The content of L-malic acid was determined for different types of wine, and polyvinylpolypyrrolidone (PVPP) was used as a bleaching agent with red wine. The results obtained for the wine samples using the sensing layer are comparable to those obtained from a reference method based on UV-vis molecular absorption spectrometry, if the matrix effect is corrected for.  相似文献   

8.
Mano N  Kuhn A 《Talanta》2005,66(1):21-27
We propose a procedure to assemble monolayers of redox mediator, coenzyme, enzyme and stabilizing polyelectrolyte on an electrode surface using essentially electrostatic and complexing interactions. In a first step a monolayer of redox mediator, substituted nitrofluorenones, is adsorbed. In a second step, a layer of calcium cations is immobilized at the interface. It establishes a bridge between the redox mediator and the subsequently adsorbed coenzyme NAD+. In the next step we use the intrinsic affinity of the NAD+ monolayer for dehydrogenases to build up a multilayer composed of mediator/Ca2+/NAD+/dehydrogenase. The so obtained modified electrode can be used as a biosensor. Quartz crystal microbalance measurements allowed us to better understand the different parameters responsible for the adsorption. A more detailed investigation of the system made it possible to finally stabilize the assembly sufficiently by the adsorption of a polyelectrolyte layer in order to perform rotating disk electrode measurements with the whole supramolecular architecture on the electrode surface.  相似文献   

9.
Phenylalanine dehydrogenase (l-PheDH) from Sporosarcina ureae was immobilized on DEAE-cellulose, modified initially with 2-amino-4,6-dichloro-s-triazine followed by hexamethylenediamine and glutaraldehyde. The highest activity of immobilized PheDH was determined as 95.75 U/g support with 56% retained activity. The optimum pH value of immobilized l-PheDH was shifted from pH 10.4 to 11.0. The immobilized l-PheDH showed activity variations close to the maximum value in a wider temperature range of 45–55 °C, whereas it was 40 °C for the native enzyme. The pH and the thermal stability of the immobilized l-PheDH were also better than the native enzyme. At pH 10.4 and 25 °C, K m values of the native and the immobilized l-PheDH were determined as K m Phe = 0.118, 0.063 mM and K m NAD+ = 0.234, 0.128 mM, respectively. Formed NADH at the exit of packed bed reactor column was detected by the flow-injection analysis system. The conversion efficiency of the reactor was found to be 100% in the range of 5–600 μM Phe at 9 mM NAD+ with a total flow rate of 0.1 mL/min. The reactor was used for the analyses of 30 samples each for 3 h per day. The half-life period of the reactor was 15 days.  相似文献   

10.
A sequential injection system to monitor glycerol in a Saccharomyces cerevisiae fermentation process was developed. The method relies on the rate of formation of nicotinamide adenine dinucleotide in its reduced form (NADH, measured spectrophotometrically at 340 nm) from the reaction of glycerol with NAD+ cofactor, catalysed by the enzyme glycerol dehydrogenase present in solution. This procedure enables the determination of glycerol between 0.046 and 0.46 g/l, (corresponding to yeast fermentation samples with concentrations up to 50 g/l) with good repeatability (relative standard deviation for n = 10 lower than 2.2% for three different samples) at a sampling frequency of 25/h. The detection and quantification limits using a miniaturised spectrophotometer were 0.13 and 0.44 mM, respectively. Reagent consumption was of 0.45 μmol NAD+ and 1.8 μg enzyme per assay, and the waste production was 2.8 ml per determination. Results obtained for samples were in agreement with those obtained with a high-performance liquid chromatography method.  相似文献   

11.
The oxidized form of nicotinamide adenine dinucleotide (NAD+) is chemically immobilized at the surface of a carbon paste electrode containing n-octaldehyde. The NAD+ is converted to NADH by oxidation of ethanol and -lactic acid catalyzed by their respective dehydrogenases, and the NADH formed is oxidized electrochemically to the original NAD+, thus giving a well defined linear-sweep voltammetric peak. The peak area is linearly related to the amount of ethanol or -lactic acid in the range 0.05–2 × 10-9 mol.  相似文献   

12.
myo-Inositol-1-phosphate synthase (EC 5.5.1.4) from rat testes, an NAD+-containing enzyme, which convertsd-glucose 6-phosphate to 1l-myo-inositol 1-phosphate, could be immobilized together with its cofactor and bovine serum albumin by crosslinking with glutaraldehyde at pH 4.5. The enzyme bound to the gel showed a specific activity of 5.6% of that of the native enzyme, but the activity could be increased to 21% by pretreatment with urea.  相似文献   

13.
Enzyme cofactors play a major role in biocatalysis, as many enzymes require them to catalyze highly valuable reactions in organic synthesis. However, the cofactor recycling is often a hurdle to implement enzymes at the industrial level. The fabrication of heterogeneous biocatalysts co‐immobilizing phosphorylated cofactors (PLP, FAD+, and NAD+) and enzymes onto the same solid material is reported to perform chemical reactions without exogeneous addition of cofactors in aqueous media. In these self‐sufficient heterogeneous biocatalysts, the immobilized enzymes are catalytically active and the immobilized cofactors catalytically available and retained into the solid phase for several reaction cycles. Finally, we have applied a NAD+‐dependent heterogeneous biocatalyst to continuous flow asymmetric reduction of prochiral ketones, thus demonstrating the robustness of this approach for large scale biotransformations.  相似文献   

14.
Pseudomonas fluorescens (strain BTP9) was found to have at least two NAD(P)-dependent vanillin dehydrogenases: one is induced by vanillin, and the other is constitutive. The constitutive enzyme was purified by ammonium sulfate fractionation, gel-filtration, and Q-Sepharose chromatography. The subunit Mr value was 55,000, determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The native M r value estimated by gelfiltration chromatography gave a value of 210,000. The enzyme made use of NAD+ less effectively than NADP+. Benzaldehyde, 4-hydroxybenzaldehyde, hexanal, and acetaldehyde were not oxidized at detectable rates in the presence of NAD+ or NADP+. The ultraviolet absorption spectrum indicated that there is no cofactor or prosthetic group bound. The vanillin oxidation reaction was essentially irreversible. The pH optimum was 9.5 and the pI of the enzyme was 4.9. Enzyme activity was not affected when assayed in the presence of salts, except FeCl2. The enzyme was inhibited by the thiol-blocking reagents 4-chloromercuribenzoate and N-ethylmaleimide. NAD+ and NADP+ protected the enzyme against such a type of inhibition along with vanillin to a lesser extent. The enzyme exhibited esterase activity with 4-nitrophenyl acetate as substrate and was activated by low concentrations of NAD+ or NADP+. We compared the properties of the enzyme with those of some well-characterized microbial benzaldehyde dehydrogenases.  相似文献   

15.
Apart from its vital function as a redox cofactor, nicotinamide adenine dinucleotide ( NAD+ ) has emerged as a crucial substrate for NAD+ -consuming enzymes, including poly(ADP-ribosyl)transferase 1 (PARP1) and CD38/CD157. Their association with severe diseases, such as cancer, Alzheimer's disease, and depressions, necessitates the development of new analytical tools based on traceable NAD+ surrogates. Here, the synthesis, photophysics and biochemical utilization of an emissive, thieno[3,4-d]pyrimidine-based NAD+ surrogate, termed NthAD+ , are described. Its preparation was accomplished by enzymatic conversion of synthetic th ATP by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1). The new NAD+ analogue possesses useful photophysical features including redshifted absorption and emission maxima as well as a relatively high quantum yield. Serving as a versatile substrate, NthAD+ was reduced by alcohol dehydrogenase (ADH) to NthADH and afforded thADP-ribose ( th ADPr ) upon hydrolysis by NAD+ -nucleosidase (NADase). Furthermore, NthAD+ was engaged in cholera toxin A (CTA)-catalyzed mono(thADP-ribosyl)ation, but was found incapable in promoting PARP1-mediated poly(thADP-ribosyl)ation. Due to its high photophysical responsiveness, NthAD+ is suited for spectroscopic real-time monitoring. Intriguingly, and as an N7-lacking NAD+ surrogate, the thieno-based cofactor showed reduced compatibility (i.e., functional similarity compared to native NAD+ ) relative to its isothiazolo-based analogue. The distinct tolerance, displayed by diverse NAD+ producing and consuming enzymes, suggests unique biological recognition features and dependency on the purine N7 moiety, which is found to be of importance, if not essential, for PARP1-mediated reactions.  相似文献   

16.
Enzyme cofactors play a major role in biocatalysis, as many enzymes require them to catalyze highly valuable reactions in organic synthesis. However, the cofactor recycling is often a hurdle to implement enzymes at the industrial level. The fabrication of heterogeneous biocatalysts co-immobilizing phosphorylated cofactors (PLP, FAD+, and NAD+) and enzymes onto the same solid material is reported to perform chemical reactions without exogeneous addition of cofactors in aqueous media. In these self-sufficient heterogeneous biocatalysts, the immobilized enzymes are catalytically active and the immobilized cofactors catalytically available and retained into the solid phase for several reaction cycles. Finally, we have applied a NAD+-dependent heterogeneous biocatalyst to continuous flow asymmetric reduction of prochiral ketones, thus demonstrating the robustness of this approach for large scale biotransformations.  相似文献   

17.
The tris-bipyridine ligand3a and its stoichiometric Rh3+ complex have been prepared. Cyclovoltammograms of the complex at pH 7.4 using a glassy carbon disk electrode reveal a strong reduction peak at –620 mV and two weak reduction peaks at more negative voltage. The reduction potential of the new complex is shifted by 300 mV to more positive values as compared to [Rh(bipy)3]3+. There is no reversible reoxidation peak of the Rh(I) complex formed due to the decomplexation of one of the three bipyridine units in the course of the transition Rh(III)Rh(I). The Rh(III) complex of3a was also studied with respect to its function as a possible redox mediator for the electrochemical regeneration of NADH from NAD+. The preparative electrolysis of the Rh3+ complex of3a in the presence of NAD+ yields a selective formation of NADH, whereas NAD dimers were not detected. On the other hand, a significant acceleration of this reaction compared to [Rh(bipy)3]3+ was not observed.  相似文献   

18.
The reagentless and oxygen‐independent biosensors for ethanol were developed based on the covalent immobilization of alcohol dehydrogenase (ADH) and its cofactor nicotinamide adenine dinucleotide (NAD+) on chitosan (CHIT) chains. The CHIT‐NAD+‐ADH structures were adsorbed onto carbon nanotubes (CNT) in order to provide a signal transduction based on the recycling of redox states of NAD cofactor at CNT (detection limit, 8–30 µM ethanol; dynamic range up to 20 mM). The CHIT‐NAD+‐dehydrogenase/CNT hybrid material represents a general approach to the development of dehydrogenases‐based electrochemical biosensors. Interestingly, the CHIT‐NAD+ solutions preserved their enzymatic activity even after five years of storage at 4 °C.  相似文献   

19.
Guest–host interaction of astemizole (Astm) with cyclodextrins (CDs) has been investigated using phase solubility diagrams (PSD), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), proton nuclear magnetic resonance (1H-NMR) and molecular mechanical modeling (MM+). Estimates of the complex formation constant, K 11, show that the tendency of Astm to complex with CDs follows the order: β-CD>HP-β-CD>γ-CD, α-CD. 1:1 Astm/β-CD complex formation at pH=5.0 was largely driven by the hydrophobic effect (desolvation), which was quantitatively estimated at −16.5 kJ⋅mol−1, whereas specific interactions contribute only −5.3 kJ⋅mol−1 to 1:1 complex stability (ΔG 11o=−22.7 kJ⋅mol−1). The percentage contributions of the hydrophobic effect and specific interactions were therefore 73 and 27%, respectively. Both enthalpic and entropic factors contribute equally well (−11 kJ⋅mol−1 each) to 1:1 Astm/β-CD complex stability. 1H-NMR and MM+ molecular modeling studies indicate the formation of different isomeric 1:1 and 1:2 complexes. The dominant driving force for complexation is evidently van der Waals with very little electrostatic contribution. PSD, 1H-NMR, DSC, XRPD and MM+ studies proved the formation of inclusion complexes in solution and the solid state.  相似文献   

20.
Crosslinked films consisting of the acrylamide-acrylamidophenylboronic acid copolymer that are imprinted with recognition sites for β-nicotinamide adenine dinucleotide (NAD+), β-nicotinamide adenine dinucleotide phosphate NADP+, and their reduced forms (NAD(P)H), are assembled on Au-coated glass supports. The binding of the oxidized cofactors NAD+ or NADP+ or the reduced cofactors NADH or NADPH to the respective imprinted sites results in the swelling of the polymer films through the uptake of water. Surface plasmon resonance (SPR) spectroscopy is employed to follow the binding of the different cofactors to the respective imprinted sites. The imprinted recognition sites reveal selectivity towards the association of the imprinted cofactors. The method enables the analysis of the NAD(P)+ and NAD(P)H cofactors in the concentration range of 1×10−6 to 1×10−3 M. The cofactor-imprinted films associated with the Au-coated glass supports act as active interfaces for the characterization of biocatalyzed transformations that involve the cofactor-dependent enzymes. This is exemplified with the characterization of the biocatalyzed oxidation of lactate to pyruvate in the presence of NAD+ and lactate dehydrogenase using the NADH-imprinted polymer film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号