首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cyclic sequence of elements of [n] is an (nk)-Ucycle packing (respectively, (nk)-Ucycle covering) if every k-subset of [n] appears in this sequence at most once (resp. at least once) as a subsequence of consecutive terms. Let \(p_{n,k}\) be the length of a longest (nk)-Ucycle packing and \(c_{n,k}\) the length of a shortest (nk)-Ucycle covering. We show that, for a fixed \(k,p_{n,k}={n\atopwithdelims ()k}-O(n^{\lfloor k/2\rfloor })\). Moreover, when k is not fixed, we prove that if \(k=k(n)\le n^{\alpha }\), where \(0<\alpha <1/3\), then \(p_{n,k}={n\atopwithdelims ()k}-o({n\atopwithdelims ()k}^\beta )\) and \(c_{n,k}={n\atopwithdelims ()k}+o({n\atopwithdelims ()k}^\beta )\), for some \(\beta <1\). Finally, we show that if \(k=o(n)\), then \(p_{n,k}={n\atopwithdelims ()k}(1-o(1))\).  相似文献   

2.
Let q be a power of a prime p, and let \(r=nk+1\) be a prime such that \(r\not \mid q\), where n and k are positive integers. Under a simple condition on q, r and k, a Gauss period of type (nk) is a normal element of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\); the complexity of the resulting normal basis of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\) is denoted by C(nkp). Recent works determined C(nkp) for \(k\le 7\) and all qualified n and q. In this paper, we show that for any given \(k>0\), C(nkp) is given by an explicit formula except for finitely many primes \(r=nk+1\) and the exceptional primes are easily determined. Moreover, we describe an algorithm that allows one to compute C(nkp) for the exceptional primes \(r=nk+1\). Our numerical results cover C(nkp) for \(k\le 20\) and all qualified n and q.  相似文献   

3.
The Kneser graph K(nk) is the graph whose vertices are the k-element subsets of an n elements set, with two vertices adjacent if they are disjoint. The square \(G^2\) of a graph G is the graph defined on V(G) such that two vertices u and v are adjacent in \(G^2\) if the distance between u and v in G is at most 2. Determining the chromatic number of the square of the Kneser graph K(nk) is an interesting graph coloring problem, and is also related with intersecting family problem. The square of K(2kk) is a perfect matching and the square of K(nk) is the complete graph when \(n \ge 3k-1\). Hence coloring of the square of \(K(2k +1, k)\) has been studied as the first nontrivial case. In this paper, we focus on the question of determining \(\chi (K^2(2k+r,k))\) for \(r \ge 2\). Recently, Kim and Park (Discrete Math 315:69–74, 2014) showed that \(\chi (K^2(2k+1,k)) \le 2k+2\) if \( 2k +1 = 2^t -1\) for some positive integer t. In this paper, we generalize the result by showing that for any integer r with \(1 \le r \le k -2\),
  1. (a)
    \(\chi (K^2 (2k+r, k)) \le (2k+r)^r\),   if   \(2k + r = 2^t\) for some integer t, and
     
  2. (b)
    \(\chi (K^2 (2k+r, k)) \le (2k+r+1)^r\),   if  \(2k + r = 2^t-1\) for some integer t.
     
On the other hand, it was shown in Kim and Park (Discrete Math 315:69–74, 2014) that \(\chi (K^2 (2k+r, k)) \le (r+2)(3k + \frac{3r+3}{2})^r\) for \(2 \le r \le k-2\). We improve these bounds by showing that for any integer r with \(2 \le r \le k -2\), we have \(\chi (K^2 (2k+r, k)) \le 2 \left( \frac{9}{4}k + \frac{9(r+3)}{8} \right) ^r\). Our approach is also related with injective coloring and coloring of Johnson graph.
  相似文献   

4.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

5.
Corrádi and Hajnal (Acta Math Acad Sci Hung 14:423–439, 1963) proved that for all \(k\ge 1\) and \(n\ge 3k\), every (simple) graph G on n vertices with minimum degree \(\delta (G)\ge 2k\) contains k disjoint cycles. The degree bound is sharp. Enomoto and Wang proved the following Ore-type refinement of the Corrádi–Hajnal theorem: For all \(k\ge 1\) and \(n\ge 3k\), every graph G on n vertices contains k disjoint cycles, provided that \(d(x)+d(y)\ge 4k-1\) for all distinct nonadjacent vertices xy. Very recently, it was refined for \(k\ge 3\) and \(n\ge 3k+1\): If G is a graph on n vertices such that \(d(x)+d(y)\ge 4k-3\) for all distinct nonadjacent vertices xy, then G has k vertex-disjoint cycles if and only if the independence number \(\alpha (G)\le n-2k\) and G is not one of two small exceptions in the case \(k=3\). But the most difficult case, \(n=3k\), was not handled. In this case, there are more exceptional graphs, the statement is more sophisticated, and some of the proofs do not work. In this paper we resolve this difficult case and obtain the full picture of extremal graphs for the Ore-type version of the Corrádi–Hajnal theorem. Since any k disjoint cycles in a 3k-vertex graph G must be 3-cycles, the existence of such k cycles is equivalent to the existence of an equitable k-coloring of the complement of G. Our proof uses the language of equitable colorings, and our result can be also considered as an Ore-type version of a partial case of the Chen–Lih–Wu Conjecture on equitable colorings.  相似文献   

6.
In this paper, a complete classification is achieved of all the regular covers of the complete bipartite graphs \(K_{n,n}\) with cyclic covering transformation group, whose fibre-preserving automorphism group acts 2-arc-transitively. All these covers consist of one threefold covers of \(K_{6,6}\), one twofold cover of \(K_{12, 12}\) and one infinite family X(rp) of p-fold covers of \(K_{p^r,p^r}\) with p a prime and r an integer such that \(p^r\ge 3\). This infinite family X(rp) can be derived by a very simple and nice voltage assignment f as follows: \(X(r, p)=K_{p^r, p^r}\times _f \mathbb {Z}_p\), where \(K_{p^r, p^r}\) is a complete bipartite graph with the bipartition \(V=\{ \alpha \bigm |\alpha \in V(r,p)\}\cup \{ \alpha '\bigm |\alpha \in V(r,p)\}\) for the r-dimensional vector space V(rp) over the field of order p and \(f_{\alpha ,\beta '}=\sum _{i=1}^ra_ib_i,\,\, \mathrm{for\,\,all}\,\,\alpha =(a_i)_r, \beta =(b_i)_r\in V(r,p)\).  相似文献   

7.
Assign to each vertex v of the complete graph \(K_n\) on n vertices a list L(v) of colors by choosing each list independently and uniformly at random from all f(n)-subsets of a color set \([n] = \{1,\dots , n\}\), where f(n) is some integer-valued function of n. Such a list assignment L is called a random (f(n), [n])-list assignment. In this paper, we determine the asymptotic probability (as \(n \rightarrow \infty \)) of the existence of a proper coloring \(\varphi \) of \(K_n\), such that \(\varphi (v) \in L(v)\) for every vertex v of \(K_n\). We show that this property exhibits a sharp threshold at \(f(n) = \log n\). Additionally, we consider the corresponding problem for the line graph of a complete bipartite graph \(K_{m,n}\) with parts of size m and n, respectively. We show that if \(m = o(\sqrt{n})\), \(f(n) \ge 2 \log n\), and L is a random (f(n), [n])-list assignment for the line graph of \(K_{m,n}\), then with probability tending to 1, as \(n \rightarrow \infty \), there is a proper coloring of the line graph of \(K_{m,n}\) with colors from the lists.  相似文献   

8.
A graph G on n vertices is said to be (km)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each integer r in the set \(\{ m, m + 1, \ldots , n \}\). This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree et al. in (Graphs Combin 20:291–310, 2004). The notion of (km)-pancyclicity provides one way to measure the prevalence of cycles in a graph. Broersma and Veldman showed in (Contemporary methods in graph theory, BI-Wiss.-Verlag, Mannheim, Wien, Zürich, pp 181–194, 1990) that any 2-connected claw-free \(P_5\)-free graph must be hamiltonian. In fact, every non-hamiltonian cycle in such a graph is either extendable or very dense. We show that any 2-connected claw-free \(P_5\)-free graph is (k, 3k)-pancyclic for each integer \(k \ge 2\). We also show that such a graph is (1, 5)-pancyclic. Examples are provided which show that these results are best possible. Each example we provide represents an infinite family of graphs.  相似文献   

9.
10.
Linear codes with complementary duals (abbreviated LCD) are linear codes whose intersection with their dual is trivial. When they are binary, they play an important role in armoring implementations against side-channel attacks and fault injection attacks. Non-binary LCD codes in characteristic 2 can be transformed into binary LCD codes by expansion. On the other hand, being optimal codes, maximum distance separable codes (abbreviated MDS) are of much interest from many viewpoints due to their theoretical and practical properties. However, little work has been done on LCD MDS codes. In particular, determining the existence of q-ary [nk] LCD MDS codes for various lengths n and dimensions k is a basic and interesting problem. In this paper, we firstly study the problem of the existence of q-ary [nk] LCD MDS codes and solve it for the Euclidean case. More specifically, we show that for \(q>3\) there exists a q-ary [nk] Euclidean LCD MDS code, where \(0\le k \le n\le q+1\), or, \(q=2^{m}\), \(n=q+2\) and \(k= 3 \text { or } q-1\). Secondly, we investigate several constructions of new Euclidean and Hermitian LCD MDS codes. Our main techniques in constructing Euclidean and Hermitian LCD MDS codes use some linear codes with small dimension or codimension, self-orthogonal codes and generalized Reed-Solomon codes.  相似文献   

11.
The concept of pattern arises in many applications comprising experimental trials with two or more possible outcomes in each trial. A binary scan of type r / k is a special pattern referring to success–failure strings of fixed length k that contain at least r-successes, where rk are positive integers with \(r\le k\). The multiple scan statistic \(W_{t,k,r}\) is defined as the enumerating random variable for the overlapping moving windows occurring until trial t which include a scan of type r / k. In the present work, we consider a sequence of independent binary trials with not necessarily equal probabilities of success and develop upper bounds for the probability of the event that the multiple scan statistic will perform a jump from \(\ell \) to \(\ell +1\) (where \(\ell \) is a nonnegative integer) in a finite time horizon.  相似文献   

12.
For nonnegative integers qnd, let \(A_q(n,d)\) denote the maximum cardinality of a code of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider the following upper bound on \(A_q(n,d)\). For any k, let \(\mathcal{C}_k\) be the collection of codes of cardinality at most k. Then \(A_q(n,d)\) is at most the maximum value of \(\sum _{v\in [q]^n}x(\{v\})\), where x is a function \(\mathcal{C}_4\rightarrow {\mathbb {R}}_+\) such that \(x(\emptyset )=1\) and \(x(C)=\!0\) if C has minimum distance less than d, and such that the \(\mathcal{C}_2\times \mathcal{C}_2\) matrix \((x(C\cup C'))_{C,C'\in \mathcal{C}_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in n. It yields the new upper bounds \(A_4(6,3)\le 176\), \(A_4(7,3)\le 596\), \(A_4(7,4)\le 155\), \(A_5(7,4)\le 489\), and \(A_5(7,5)\le 87\).  相似文献   

13.
There has been much research on \((p^{a},p^{b},p^{a},p^{a-b})\) relative difference sets with p a prime, while there are only a few results on (mnnmnm) relative difference sets with \(\text {gcd}(m,n)=1\). The non-existence results on (mnnmnm) relative difference sets with \(\text {gcd}(m,n)=1\) have only been obtained for the following five cases: (1) \(m=p,\ n=q,\ p>q\); (2) \(m=pq,\ n=3,\ p,q>3\); (3) \(m=4,\ n=p\); (4) \(m=2\) and (5) \(n=p\), where pq are distinct odd primes. For the existence results, there are only four constructions of semi-regular relative difference sets in groups of size not a prime power with the forbidden subgroup having size larger than 2. In this paper, we present some more non-existence results on (mnnmnm) relative difference sets with \(\text {gcd}(m,n)=1\). In particular, our result is a generalization of the main result of Hiramine’s work (J Comb Theory Ser A 117(7):996–1003, 2010). Meanwhile, we give a construction of non-abelian (16qq, 16q, 16) relative difference sets, where q is a prime power with \(q\equiv 1\pmod {4}\) and \(q>4.2\times 10^{8}\). This is the third known infinite classes of non-abelian semi-regular relative difference sets.  相似文献   

14.
Let \(\mathbb {F}_{p^m}\) be a finite field of cardinality \(p^m\), where p is a prime, and kN be any positive integers. We denote \(R_k=F_{p^m}[u]/\langle u^k\rangle =F_{p^m}+uF_{p^m}+\cdots +u^{k-1}F_{p^m}\) (\(u^k=0\)) and \(\lambda =a_0+a_1u+\cdots +a_{k-1}u^{k-1}\) where \(a_0, a_1,\ldots , a_{k-1}\in F_{p^m}\) satisfying \(a_0\ne 0\) and \(a_1=1\). Let r be a positive integer satisfying \(p^{r-1}+1\le k\le p^r\). First we define a Gray map from \(R_k\) to \(F_{p^m}^{p^r}\), then prove that the Gray image of any linear \(\lambda \)-constacyclic code over \(R_k\) of length N is a distance preserving linear \(a_0^{p^r}\)-constacyclic code over \(F_{p^m}\) of length \(p^rN\). Furthermore, the generator polynomials for each linear \(\lambda \)-constacyclic code over \(R_k\) of length N and its Gray image are given respectively. Finally, some optimal constacyclic codes over \(F_{3}\) and \(F_{5}\) are constructed.  相似文献   

15.
An interassociate of a semigroup \((S,\cdot )\) is a semigroup \((S, *)\) such that for all \(a, b, c \in S\), \(a\cdot (b*c)=(a\cdot b) *c\) and \(a*(b\cdot c)=(a*b) \cdot c\). We investigate the bicyclic semigroup C and its interassociates. In particular, if p and q are the generators of the bicyclic semigroup and m and n are fixed nonnegative integers, the operation \(a*_{m,n} b= aq^mp^n b\) is known to be an interassociate. We show that for distinct pairs (mn) and (st), the interassociates \((C, *_{m,n})\) and \((C, *_{s,t})\) are not isomorphic. We also generalize a result regarding homomorphisms on C to homomorphisms on its interassociates.  相似文献   

16.
It is well known that Euler’s totient function \(\phi \) satisfies the arithmetical equation \( \phi (mn)\phi ((m, n))=\phi (m)\phi (n)(m, n) \) for all positive integers m and n, where (mn) denotes the greatest common divisor of m and n. In this paper we consider this equation in a more general setting by characterizing the arithmetical functions f with \(f(1)\ne 0\) which satisfy the arithmetical equation \( f(mn)f((m,n)) = f(m)f(n)g((m, n)) \) for all positive integers mn with \(m,n \in A(mn)\), where A is a regular convolution and g is an A-multiplicative function. Euler’s totient function \(\phi _A\) with respect to A is an example satisfying this equation.  相似文献   

17.
We provide exact asymptotics for the tail probabilities \({\mathbb {P}}\{ S_{n,r} > x \}\) as \(x \rightarrow \infty \), for fixed n, where \(S_{n,r}\) is the r-trimmed partial sum of i.i.d. St. Petersburg random variables. In particular, we prove that although the St. Petersburg distribution is only O-subexponential, the subexponential property almost holds. We also determine the exact tail behavior of the r-trimmed limits.  相似文献   

18.
Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code division multiple access (OCDMA) network for 2-dimensional image transmission. There is a one-to-one correspondence between an \((m, n, w, \lambda )\)-OOSPC and a \((\lambda +1)\)-(mnw, 1) packing design admitting a point-regular automorphism group isomorphic to \({\mathbb {Z}}_m\times {\mathbb {Z}}_n\). In 2010, Sawa gave the first infinite class of (mn, 4, 2)-OOSPCs by using S-cyclic Steiner quadruple systems. In this paper, we use various combinatorial designs such as strictly \({\mathbb {Z}}_m\times {\mathbb {Z}}_n\)-invariant s-fan designs, strictly \({\mathbb {Z}}_m\times {\mathbb {Z}}_n\)-invariant G-designs and rotational Steiner quadruple systems to present some constructions for (mn, 4, 2)-OOSPCs. As a consequence, our new constructions yield more infinite families of optimal (mn, 4, 2)-OOSPCs. Especially, we see that in some cases an optimal (mn, 4, 2)-OOSPC can not achieve the Johnson bound. We also use Witt’s inversive planes to obtain optimal \((p, p, p+1, 2)\)-OOSPCs for all primes \(p\ge 3\).  相似文献   

19.
Let \(G=\mathbf{C}_{n_1}\times \cdots \times \mathbf{C}_{n_m}\) be an abelian group of order \(n=n_1\dots n_m\), where each \(\mathbf{C}_{n_t}\) is cyclic of order \(n_t\). We present a correspondence between the (4n, 2, 4n, 2n)-relative difference sets in \(G\times Q_8\) relative to the centre \(Z(Q_8)\) and the perfect arrays of size \(n_1\times \dots \times n_m\) over the quaternionic alphabet \(Q_8\cup qQ_8\), where \(q=(1+i+j+k)/2\). In view of this connection, for \(m=2\) we introduce new families of relative difference sets in \(G\times Q_8\), as well as new families of Williamson and Ito Hadamard matrices with G-invariant components.  相似文献   

20.
Let n be a positive integer. A generalized Latin square of order n is an \(n\times n\) matrix such that the elements in each row and each column are distinct. In this paper, we show that for any integer \(n\ge 6\) and any integer m where \(m\in \left\{ n, n+1, \dots , \frac{n(n+1)}{2}-2\right\} \), there exists a commutative generalized Latin square of order n with m distinct elements which is not embeddable in any group. In addition, we show that for any integer \(r\ge 3\) and any integer s where \(s\in \{ r, r+1, \dots , r^2-2\}\), there exists a non-commutative generalized Latin square of order r with s distinct elements which is not embeddable in any group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号