首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of the inclusion of the exact exchange into self-interaction corrected generalized gradient approximation density functional theory (GGA-DFT) for the simplest hydrogen abstraction reaction, H + H2 → H3 → H2 + H, is presented using a triple-zeta augmented 6-311++G(d,3pd) basis set. The introduction of the self-interaction correction has a considerably larger effect on molecular geometry and vibrational frequencies than the inclusion of the exact exchange. We investigate the influence of the self-interaction error on the shape of the potential energy surface around the transition state of the hydrogen abstraction reaction. The decomposition of the self-interaction error into correlation and exchange parts shows that the exchange self-interaction error is the main component of the energy barrier error. The best agreements with the experimental barrier height were achieved by self-interaction corrected B3LYP, B-LYP and B3PW functionals with errors of 1.5, 2.9 and 3.0 kcal/mol, respectively. Received: 13 August 1997 / Accepted: 14 November 1997  相似文献   

2.
For all isolated pentagon isomers of the fullerenes C60–C86 with nonzero HOMO–LUMO gap and for one nonclassical C72 isomer (C2 v ), endohedral chemical shifts have been computed at the GIAO-SCF/3-21G level using B3LYP/6-31G* optimized structures. The experimental 3He NMR signals are reproduced reasonably well in cases where assignments are unambiguous (e.g. C60, C70 and C76). On the basis of the calculated thermodynamic stability order and the comparison between the computed and experimental 3He chemical shifts, the assignments of the observed 3He NMR spectra are discussed for all higher fullerenes, and new assignments are proposed for one C82 and one C86 isomer (C82:3 and C86:17). The calculated helium chemical shifts also suggest the reassignment of the δ(3He) resonances of two C78 isomers. Received: 26 March 2001 / Accepted: 10 May 2001 / Published online: 11 October 2001  相似文献   

3.
High-level ab initio electronic structure theories have been applied to investigate the detailed reaction mechanism of the spin-forbidden reaction CH(2∏) + N2 → HCN + N(4S). The G2M(RCC) calculations provide accurate energies for the intermediates and transition states involved in the reaction, whereas the B3LYP/6-311G(d,p) method overestimates the stability of some intermediates by as much as about 10 kcal/mol. A few new structures have been found for both the doublet and quartet electronic states, which are mainly involved in the dative pathways. However, due to the higher energies of these structures, the dominant mechanism remains the one involving the C 2 intersystem-crossing step. The C 2 minima on the seam of crossing (MSX) structures and the spin-orbit coupling between the doublet and quartet electronic states are rather close to those found in previous studies. Vibrational frequencies orthogonal to the normal of the seam which have been applied in a separate publication to calculate the rate of the CH(2∏) + N2 → HCN + N(4S) reaction with a newly proposed nonadiabatic transition-state theory for spin-forbidden reactions have been calculated at the MSX from first principles. Received: 23 June 1998 / Accepted: 21 September 1998 / Published online: 8 February 1999  相似文献   

4.
A theoretical study of the structure, charge distribution, rotational barrier and fundamental vibrations of anhydrous betaine (CH3)3NCH2COO (trimethylglycine) was carried out and compared with available experimental data. Calculations were carried out at HF, MP2 and B3LYP levels using a 6-31+G(d,p) basis set. The calculated rotational barrier of the betaine carboxylic group is 40.5 kJ/mol at the MP4(SDQ)/6-311G(d,p)//HF/6-31+G(d,p) level of theory. The rotation of the carboxylic group changes the molecule from a highly symmetric (C s ) conformation into a twisted conformation resulting in shortening of the molecule by about 50 pm. Natural population analysis (NPA) indicates intramolecular interaction between the carboxylic oxygen and the nearest methyl hydrogens resulting in internal hydrogen bonding. MP4(SDQ)/6-311G(d,p) single-point NPA calculations on a betaine monohydrate model taken from the X-ray geometry show an expected weakening in the internal hydrogen bond. Calculations explain why betaine preferentially crystallizes in high local C s symmetry. Received: 24 March 1998 / Accepted: 3 September 1998 / Published online: 7 December 1998  相似文献   

5.
Selective bond dissociation energies for CH3SH and CH3CH2SH radical cations were evaluated with G1, G2, G2MP2, B3LYP, BLYP, and SVWN computational methods. It was determined that both G2 and CBSQ evaluate very accurate bond dissociation energies for thiol radical cations, while gradient-corrected BLYP computes the best energies of three employed DFT methods. For the CH3CH2SH radical cation, new, higher than previously estimated selective bond dissociation energies were suggested. Received: 10 September 1997 / Accepted: 9 September 1998 / Published online: 11 November 1998  相似文献   

6.
Density functional theory (DFT) calculations with different exchange‐correlation functionals were performed for a mixed valence Fe(II)/Fe(III) binuclear complex with μ‐methoxo and two μ‐carboxylate bridging ligands, (1) with geometry optimizations being performed for all possible spin multiplicities (MS = 2, 4, 6, 8, and 10). Within the exchange‐correlation functionals studied, only the hybrid GGA functionals B3P and B3LYP and also the pure GGA functional RPBE, predicts the geometry with high spin (S = 9/2) to be more stable than the geometry with low spin state (S = 1/2) by 20 kcal/mol, in agreement with the experimental findings. These functionals also predict the same stability order for the different spin states, being MS = 10>8>6>2>4. The meta‐GGA functionals TPSS and TPSSh and also the pure GGA functionals BLYP and BP86 predict different stability orders. The computed average EPR g‐tensor, gav, of 2.03, at the B3LYP level, is in good agreement with the experimental findings. Heisenberg exchange coupling constants, J, were calculated within the broken‐symmetry formalism, at the B3LYP level, showing that the two iron centers are antiferromagnetic coupling, with a very weak coupling constant of about ?7 cm?1, in good agreement with the experimental value. Additionally, the effect of using different multiplicities of the reference geometries on the computed J value is discussed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
B3LYP/6-31G* calculations on bis-periazulene (cyclohepta[def]-fluorene) predict a triplet ground state for this molecule. The singlet has an aromatic 14π-electron periphery but is 2 kcal/mol higher in energy. The results agree with earlier predictions by Heilbronner. Received: 19 August 1998 / Accepted: 6 October 1998 / Published online: 23 February 1999  相似文献   

8.
Time dependent density functional theory calculations are completed for five Ni(II) complexes formed by polydentate peptides to predict the electronic absorption spectrum. The ligands examined were glycyl‐glycyl‐glycine (GGG), glycyl‐glycyl‐glycyl‐glycine (GGGG), glycyl‐glycyl‐histidine (GGH), glycyl‐glycyl‐cysteine (GGC), and triethylenetetramine (trien). Fifteen functionals and two basis sets were tested. On the basis of the mean absolute percent deviation (MAPD), the ranking among the functionals is: HSE06 ∼ MPW1PW91 ∼ PBE0 > ω‐B97x‐D ∼ B3P86 ∼ B3LYP ∼ CAM‐B3LYP > PBE ∼ BLYP ∼ BP86 > TPSS > TPSSh > BHandHLYP > M06 ≫ M06‐2X. Concerning the basis sets, the triple‐ζ def2‐TZVP performs better than the double‐ζ LANL2DZ. With the functional HSE06 and basis set def2‐TZVP the MAPD with respect to the experimental λmax is 1.65% with a standard deviation of 1.26%. The absorption electronic spectra were interpreted in terms of vertical excitations between occupied and virtual MOs based on Ni‐d atomic orbitals. The electronic structure of the Ni(II) species is also discussed.  相似文献   

9.
Density functional theory (DFT) with the Becke's three-parameter exchange correlation functional and the functional of Lee, Yang and Parr, gradient-corrected functionals of Perdew, and Perdew and Wang [the DFT(B3LYP), DFT(B3P86) and DFT(B3PW91) methods, respectively], and several levels of conventional ab initio post-Hartree-Fock theory (second- and fourth-order perturbation theory M?ller-Plesset MP2 and MP4(SDTQ), coupled cluster with the single and double excitations (CCSD), and CCSD with perturbative triple excitation [CCSD(T)], configuration interaction with the single and double excitations [CISD], and quadratic configuration interaction method [QCISD(T)], using several basis sets [ranging from a simple 6-31G(d,p) basis set to a 6-311+ +G(3df, 2pd) one], were applied to study of the molecular structure (geometrical parameters, rotational constants, dipole moment) and harmonized infrared (IR) spectrum of formaldehyde (CH2O). High-level ab initio methods CCSD(T) and QCISD(T) with the 6-311+ +G(3df, 2pd) predict correctly molecular parameters, vibrational harmonic wavenumbers and the shifts of the harmonic IR spectrum of 12CH2 16O upon isotopic substitution. Received: 30 January 1997 / Accepted: 7 May 1997  相似文献   

10.
This contribution presents results from applying two different charge models to take into account intermolecular interactions to model the solid-state effects on the 19F NMR chemical-shift tensors. The density functional theory approach with the B3LYP gradient-corrected exchange correlation functional has been used because it includes electron correlation effects at a reasonable cost and is able to reproduce chemical shifts for a great variety of nuclei with reasonable accuracy. The results obtained with the charge models are compared with experimental data and with results obtained from employing the cluster model, which explicitly includes neighboring molecular fragments. The results show that the point-charge models offer similar accuracy to the cluster model with a lower cost. Received: 3 October 1999 / Accepted: 3 February 2000 / Published online: 5 June 2000  相似文献   

11.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   

12.
The vibrational frequencies of several states of␣CaO2, ScO2, and TiO2 are computed using density functional theory (DFT), the Hartree-Fock approach, second-order M?ller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of connected triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the most cost-effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches. Received: 3 September 1997 / Accepted: 8 December 1997  相似文献   

13.
 A theoretical study of the reaction of CN with C2H2 + has been carried out at three levels of theory, namely G2, B3LYP and CCSD(T). The main conclusion is that this is a feasible process under interstellar conditions, but only linear species may be produced. The most favourable product is HCCCN+, followed by CCCNH+. Production of HCCNC+ is predicted to be slightly endothermic; therefore, the reaction of CN + C2H2 + may produce precursors of HC3N and C3N in space. Furthermore, the B3LYP level is found to perform rather well compared with G2 and even better than CCSD(T). Received: 14 September 1999 / Accepted: 3 February 2000 / Published online: 12 May 2000  相似文献   

14.
15.
The chemoselectivity and regioselectivity of the domino intermolecular [4 + 2]/[3 + 2] cycloaddition reactions of nitroalkenes with substituted alkenes, vinyl ethers as electron-rich alkenes and vinyl ketones as electron-poor alkenes, have been studied using density functional theory (DFT) methods with the B3LYP functional and the 6-31G* basis set. These domino processes comprise two consecutive cycloaddition reactions: the first one is an intermolecular [4 + 2] cycloaddition of the vinyl ether to the nitroalkene to give a nitronate intermediate, which then affords the final nitroso acetal adduct through an intermolecular [3 + 2] cycloaddition reaction with the vinyl ketone. The two consecutive cycloadditions present total chemoselectivity and ortho regioselectivity. While first [4 + 2] cycloaddition reaction takes place along the attack of the electron-rich alkene to nitroalkene, the [3 + 2] one takes place along the attack of the electron-poor alkene to the corresponding nitronate intermediate. This DFT study is in complete agreement with the experimental results. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 2 May 2000  相似文献   

16.
Ethyl formate and other substituted ethyl formates exist in stable anti and gauche conformations about the COCC dihedral angle, according to microwave spectroscopic studies. Similar studies of ethyl thiolformates characterize stable gauche conformations about the corresponding CSCC dihedral angle in every compound studied, but the anti conformation is found only in ethyl fluorothiolformate and chlorothiolformate. Ab initio calculations that include electron correlation via MP2 or the B3LYP density functional model have been carried out for ethyl and methyl formate and thiolformate and their fluoroformate analogs. These calculations reveal that the potential energy minima at gauche and anti COCC configurations are well developed in every case. However, although the gauche minimum for the CSCC torsional angle is clearly defined, the potential function near the anti CSCC configuration corresponds to a potential energy plateau rather than a minimum. In the case of ethyl fluorothiolformate, a modest well is predicted at the anti CSCC configuration, in agreement with experimental results. Received: 7 July 1998 / Accepted: 21 September 1998 / Published online: 15 February 1999  相似文献   

17.
In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 4-nitrotoluene are studied. The FTIR and FTRaman experimental spectra of the molecule have been recorded in the range of 4000–100 cm?1. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The experimental determinations of vibrational frequencies are compared with those obtained theoretically from ab initio HF and DFT quantum mechanical calculations using HF/6-31G (d, p), B3LYP/6-31++G* (d, p) and B3LYP/6-311++G* (d, p) methods. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The vibrations of NO2 and CH3 groups coupled with skeletal vibrations are also investigated.  相似文献   

18.
Ab initio HF/6-31G* and MP2/6-31G*//HF/6-31G* methods were used to calculate the structure optimization and conformational interconversion pathways for all-(Z )-cyclododeca-1,4,7,10-tetraene. This compound adopts the symmetrical crown (C 4v) conformation. Ring inversion takes place via symmetrical intermediates, such as boat-chair (BC, C s) and twist (C 2h) conformers and requires about 22.3 kJ · mol−1. The calculated strain energies for BC and twist conformers are 5.9 and 13.5 kJ · mol−1. The results of semiempirical AM1 calculations for structural parameters and relative energies of the important geometries of the title compound are in good agreement with the results of ab initio methods.  相似文献   

19.
 The B3LYP/6-311G(d) and CCSD(T)/6-311G(2df) (single-point) methods have been used to investigate the singlet potential energy surface of C2NP, in which seven stationary isomers and seventeen interconversion transition states are involved. At the final CCSD(T)/6-311G(2df)//B3LYP6-311G(d) level with zero-point vibrational energy correction the lowest-lying isomer is a linear NCCP followed by two linear CNCP isomers at 23.9  and CCNP at 65.8 kcal mol−1, respectively. The three isomers are kinetically very stable towards both isomerization and dissociation, and CCNP is even more kinetically stable than CNCP – by 14.3 kcal mol−1 despite its high energy. Further comparative calculations were performed at the QCISD and QCISD(T) levels with the 6-311G(d) and 6-311G(2d) basis sets to obtain more reliable structures and spectroscopy for the three isomers. The calculated bond lengths, rotational constant, and dipole moment for NCCP were in close agreement with the experimentally determined values. Finally, similarities and discrepancies between the potential energy surface of C2NP and those of the analogous species C2N2 and C2P2 were compared. The results presented in this paper might be helpful for future identification of the two still unknown yet kinetically very stable isomers CNCP and CCNP, both in the laboratory and in interstellar space. Received: 3 January 2001 / Accepted: 6 June 2001 / Published online: 30 October 2001  相似文献   

20.
Potential-energy curves for the ground state and lower excited states of the Cd2 dimer have been calculated. They are obtained using a multireference doubles excitation configuration interaction procedure and employing Slater basis sets, previously optimized at the self-consistent-field level for excited states of the Cd atom. The spectroscopic constants and excitation energies for the bound states of Cd2 have been compared with experimental as well as other theoretical results. The ground state of Cd2 is essentially repulsive and presents a shallow van der Waals minimum. The computed adiabatic electronic transitions are in good agreement with the experimental ones. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 2 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号