首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The general mechanism of tractive performance of a four-wheel vehicle with rear-wheel drive moving up and down a sloped sandy soil has been considered theoretically. For the given vehicle dimensions and terrain-wheel system constants, the relationships among the effective tractive or braking effort of the vehicle, the amount of sinkage of the front and rear wheels, and the slip ratio were analysed by simulation. The optimum eccentricity of the vehicle’s center of gravity and the optimum application height of the drawbar-pull for obtaining the largest value of maximum effective tractive or braking effort could be calculated by means of the analytical simulation program. For a 5.88 kN weight vehicle, it was found that the optimum eccentricity of the center of gravity eopt was 1/6 for the range of slope angle—0βπ/24 rad during driving action of the rear wheel and eopt was also 1/6 for the range of slope angle—π/24β0 rad during braking action of the rear wheel. The optimum application height Hopt was found to be 35 cm for the range of slope angle 0βπ/24 rad during driving action of the rear wheel and Hopt was 0 cm for the range of slope angle—π/24β0 rad during braking action of the rear wheel.  相似文献   

2.
This study aims to investigate the tractive performance of a two-axle, two-wheel vehicle with rear-wheel drive or brake and the compaction of a decomposed granite soil. The effects of traction or braking, the change of sinkage, the slip ratio of the front and rear roller, and the number of passes of the road roller were studied. A number of tests were conducted and the experimental data were compared with the theoretical analysis results. It was observed that the amount of sinkage on the front and rear roller took the minimum value when the front roller was in the unpowered rolling state and the slip ratio of the rear roller was almost zero. When the absolute value of the slip ratio of rear roller increased, the amount of sinkage on the front and rear rollers, the absolute value of the driven or braking force of the rear roller and the absolute value of effective tractive or braking effort of the road roller increased. When the front roller was in the unpowered rolling state and the rear roller was in the braking state at −5% skid, the compaction density of the soil was at a maximum.  相似文献   

3.
In earthmoving sites, multi-wheeled vehicles are used to excavate a sandy soil or to pull other construction machinery. In this paper, the mechanism of a 5.88 kN weight, two-axle, four-wheel vehicle running on a loose sandy soil is theoretically analysed. For given terrain-wheel system constants, the combination of the effective braking force of the front wheel during pure rolling state and the effective driving force of the rear wheel during driving action will clarify the relation between effective effort of the vehicle and slip ratio and the relation between amounts of sinkage the front and rear wheels and slip ratio, etc. The maximum effective tractive effort of the vehicle varies with the height of application force and the position of the center of gravity of the vehicle. The optimum height of application of force and the eccentricity of the center of gravity to obtain the largest value of the maximum effective tractive effort can be explained with an analytical simulation program. Results of this study showed that the optimum height of application force should be 30 cm and the optimum eccentricity of the center of gravity is 0.05 for a vehicle considered for this study.  相似文献   

4.
Off-road vehicle performance is strongly influenced by the tire-terrain interaction mechanism. Soft soil reduces traction and significantly modifies vehicle handling; therefore tire dynamics plays a strong role in off-road mobility evaluation and needs to be addressed with ad-hoc models. Starting from a semi-empirical tire model based on Bekker–Wong theory, this paper, analyzes the performance of a large four wheeled vehicle driving on deformable terrain. A 14 degree of freedom vehicle model is implemented in order to investigate the influence of torque distribution on tractive efficiency through the simulation of front, rear, and all wheel drive configuration. Results show that optimal performance, regardless vertical load distribution, is achieved when torque is biased toward the rear axle. This suggests that it is possible to improve tractive efficiency without sacrificing traction and mobility. Vehicle motion is simulated over dry sand, moist loam, flat terrain and inclined terrain.  相似文献   

5.
A comprehensive method for prediction of off-road driven wheel performance is presented, assuming a parabolic wheel–soil contact surface. The traction performance of a driven wheel is predicted for both driving and braking modes. Simulations show significant non-symmetry of the traction performance of the driving and braking wheels. The braking force is significantly greater than the traction force reached in the driving mode. In order to apply the suggested model for prediction of the traction performance of a 4WD vehicle, the load transfer effect was considered. Simulated traction performances of front and rear driven wheels differ significantly, due to the load transfer. In the driving mode, the rear driven wheel develops a net traction force greater than that of the front wheel. On the other hand, in the braking mode the front driven wheel develops a braking force significantly greater than that of the rear driven wheel due to a pushed/pulled force affected by the load transfer. The suggested model was successfully verified by the data reported in literature and by full-scale field experiments with a special wheel-testing device. The developed approach may improve the prediction of off-road multi-drive vehicle traction performance.  相似文献   

6.
The effect of velocity on rigid wheel performance   总被引:1,自引:0,他引:1  
A simulation model to predict the effect of velocity on rigid-wheel performance for off-road terrain was examined. The soil–wheel simulation model is based on determining the forces acting on a wheel in steady state conditions. The stress distribution at the interface was analyzed from the instantaneous equilibrium between wheel and soil elements. The soil was presented by its reaction to penetration and shear. The simulation model describes the effect of wheel velocity on the soil–wheel interaction performances such as: wheel sinkage, wheel slip, net tractive ratio, gross traction ratio, tractive efficiency and motion resistance ratio. Simulation results from several soil-wheel configurations corroborate that the effect of velocity should be considered. It was found that wheel performance such as net tractive ratio and tractive efficiency, increases with increasing velocity. Both, relative wheel sinkage and relative free rolling wheel force ratio, decrease as velocity increases. The suggested model improves the performance prediction of off-road operating vehicles and can be used for applications such as controlling and improving off-road vehicle performance.  相似文献   

7.
To determine the tractive performance of a bulldozer running on weak ground in the driven state, the relations between driving force, drawbar pull, sinkage, eccentricity and slip ratio have been analysed together with each energy balance; effective input energy, sinkage deformation energy, slippage energy and drawbar pull energy. It is considered that the thrust is developed not only on the main straight part of the bottom track belt but also on parts of the front idler and rear sprocket, and the compaction resistance is calculated from the amount of slip sinkage. For a given vehicle and soil properties, it is determined that the drawbar pull increases directly with the slip ratio and reaches about 70% of the maximum driving force. The compaction resistance reaches about 13% of the maximum driving force. The sinkage of the rear sprocket, the eccentricity, and the trim angle increase with the increment of slip ratio due to the slip sinkage. These analytical results have been verified experimentally. After determining the optimum slip ratio to obtain a maximum effective tractive power, it is found that a larger optimum drawbar pull at optimum contact pressure could be obtained for a smaller eccentricity of vehicle center of gravity and a larger track length-width ratio under the same contact area.  相似文献   

8.
The tractive and braking performances of a 40 kN rubber-tracked vehicle travelling up and down a sloped pavement depend on the grouser shape. The purpose of this paper is to find the most suitable grouser shape to obtain the maximum optimum effective tractive effort and the maximum optimum effective braking force and to clarify the several traffic performances of the vehicle travelling up and down sloped concrete and asphalt paved roads. As results, it is verified that the most suitable shape of rubber grouser is an equilateral trapezoid type of contact length 3 cm for concrete pavement and another of contact length 5 cm for asphalt pavement, respectively, and that the effective tractive effort and the effective braking force decrease with the increment of slope angle.  相似文献   

9.
The objective of this study is to analyse the tractive and braking performance of a tractor travelling up and down a weak silty loam sloped terrain. The effects of track belt size on terrain-track system parameters were investigated experimentally, and the force and energy balances were clarified for the actual flexible tracked vehicle. The flexibility of the track belt has been precisely analysed as a function of track tension, loading and reloading properties of terrain, and contact pressure distributions. The results show that the optimum effective driving (or braking) force decreases with the increase of slope angle due to the decreasing vehicle weight component, while the thrust (or drag) decreases and the compaction resistance increases. The contact pressure distribution under the flexible track belt shows a triangular wavy pattern having peak values under each track roller. The shear resistance distribution has positive and negative peak values for the driving and braking states, respectively.  相似文献   

10.
The purpose of this study is to analyze the performance of a lugged wheel for a lunar micro rover on sloped terrain by a 2D discrete element method (DEM), which was initially developed for horizontal terrain. To confirm the applicability of DEM for sloped terrain locomotion, the relationships of slope angle with slip, wheel sinkage and wheel torque obtained by DEM, were compared with experimental results measured using a slope test bed consisting of a soil bin filled with lunar regolith simulant. Among the lug parameters investigated, a lugged wheel with rim diameter of 250 mm, width of 100 mm, lug height of 10 mm, lug thickness of 5 mm, and total lug number of 18 was found, on average, to perform excellently in terms of metrics, such as slope angle for 20% slip, power number for self-propelled point, power number for 15-degree slope and power number for 20% slip. The estimation of wheel performance over sloped lunar terrain showed an increase in wheel slip, and the possibility exists that the selected lugged wheel will not be able to move up a slope steeper than 20°.  相似文献   

11.
To successfully deploy a wheeled mobile robot on deformable rough terrains, the wheel-terrain interaction mechanics should be considered. Skid terramechanics is an essential part of the wheel terramechanics and has been studied by the authors based on the wheel sinkage obtained using a linear displacement sensor that does not consider soil bulldozing effect. The sinkage measured by a newly developed wheel via detecting the entrance angle is about 2 times of that measured by the linear displacement sensor. On the basis of the wheel sinkage that takes the soil bulldozing effect into account, a linear function is proposed to the sinkage exponent. Soil flow in the rear region of wheel-soil interface is considered in the calculation of soil shear displacement, and its average velocity is assumed to be equal to the tangential velocity component of the transition point of shear stress. To compute the normal stress in the rear region directly, the connection of the entrance and leaving points is supposed as the reference of wheel sinkage. The wheel performance can be accurately estimated using the proposed model by comparing the simulation results against the experimental data obtained using two wheels and on two types of sands.  相似文献   

12.
This paper presents the effects of different wheel grouser shapes on the traction performance of a grouser wheel traveling on sandy terrain. Grouser wheels are locomotion gears that allow small and lightweight exploration rovers to traverse on the loose sand on extraterrestrial surfaces. Although various grouser shapes have been analyzed by some research groups, a more synthetic and direct comparison of possible grousers is required for practical applications. In this study, we developed a single wheel testbed and experimentally investigated the effects of four grouser shapes (parallel, slanted, V-shaped, and offset V-shaped) on the traction performance of linear movement on flat sand. The wheel slip, sinkage, traction and side force acting on the wheel axle, the wheel driving torque, and the efficiency of each wheel were examined. Thereafter, the effects on the lateral slope traversability of a small and lightweight four-wheeled rover with different grouser shapes were also examined. The traversability experiment demonstrated the vehicle mobility performance in order to contribute to the design optimization of rover systems. These experimental results and their comparisons suggested that, of the shapes studies herein, the slanted shape was the optimal grouser design for use in wheeled rovers on lunar and planetary soil.  相似文献   

13.
Our previous research has revealed that, for vehicles with independently driven wheels, a torque distribution based on the ratio of the vertical load of each wheel to the total vehicle load is efficient for driving on flat ground. In this research, this method of torque distribution was extended to electric off-road vehicles driving on rough ground. In order to examine the driving efficiency of these vehicles, a numerical vehicle model was constructed in the pitch plane. Simulations using the numerical vehicle model on rough ground were conducted with a proposed torque distribution and control method. The numerical results from these simulations were compared with those of a conventional vehicle to evaluate the driving efficiency and trafficability on ground with various profiles. A comparison between the simulations demonstrated that the proposed method of torque distribution to the front and rear wheels based on the ratio of the vertical load is efficient for driving on rough ground.  相似文献   

14.
Because of the unique lunar environment, a suitable wheel for lunar rover decides the rover’s trafficability on deformable terrains. The wire mesh wheel (hereinafter referred to as WMW) has the advantages of light weight and superior stability, been widely adopted for lunar rovers. But a comprehensive research on performance of WMW on deformable terrains has not been conduct. This paper would provide particular study on a type WMW, including quasi-static pressure-sinkage test and driving performance. A novel pressure-sinkage model for the WMW on deformable soils was presented. In order to investigate the sinkage characteristics of the WMW, tests were performed using a single-wheel testbed for the WMW with different loads and velocities. The effects of load and velocity on sinkage were analyzed, and the relationship between real and apparent sinkage was presented. The research on traction performance of WMW under different slip ratios (0.1–0.6) was also conducted, contrast tests were proceed by using a normal cylindrical wheel (hereinafter referred to as CW). The traction performance of WMW is analyzed using performance indices including wheel sinkage, drawbar pull, driving torque, and tractive efficiency. The experimental results and conclusions are useful for optimal WMW design and improvement/verification of wheel–soil interaction mechanics model.  相似文献   

15.
A new analytical method has been presented to predict the tractive performance of a rigid wheel running on soft ground. The resultant stress of the normal stress and the shear resistance applied around the peripherical contact part of the rigid wheel should be calculated by use of the dynamic pressure-sinkage curve measured from the plate loading and unloading test, considering the rolling locus of the wheel in the direction of the external resultant force of the effective driving force and the axle load. The effective driving force could be calculated as the difference of the driving force, i.e. the integration of shear resistance and the locomotion resistance calculated from the total amount of sinkage. As a result, the analytical relations between the driving force, the effective driving force and the slip ratio, the amount of sinkage and the slip ratio, the amount of eccentricity of resultant force and the slip ratio, and the entry angle, the exit angle and the slip ratio could be verified experimentally.  相似文献   

16.
It has been known from empirical equations that soil strength can be determined if wheel sinkage and slip of a vehicle can be measured on a soil surface. In this study, field data of wheel sinkage and slip were collected from two platform tractors of different sizes on gravely sandy and sandy loam soils. Using an empirical equation, the rating cone index was determined using the measured wheel sinkage and slip data. The data demonstrated that the same rating cone index can be obtained although the measuring platforms are different. It was also noted that the rating cone index can be estimated in real time by measuring the sinkage and slippage of a driving wheel.  相似文献   

17.
A realistic prediction of the traction capacity of vehicles operating in off-road conditions must account for stochastic variations in the system itself, as well as in the operational environment. Moreover, for mobility studies of wheeled vehicles on deformable soil, the selection of the tire model used in the simulation influences the degree of confidence in the output. Since the same vehicle may carry various loads at different times, it is also of interest to analyze the impact of cargo weight on the vehicle’s traction.This study focuses on the development of an algorithm to calculate the tractive capacity of an off-road vehicle with stochastic vehicle parameters (such as suspension stiffness, suspension damping coefficient, tire stiffness, and tire inflation pressure), operating on soft soil with an uncertain level of moisture, and on a terrain topology that induces rapidly changing external excitations on the vehicle. The analysis of the vehicle–soil dynamics is performed for light cargo and heavy cargo scenarios. The algorithm relies on the comparison of the ground pressure and the calculated critical pressure to decide if the tire can be approximated as a rigid wheel or if it should be modeled as a flexible wheel. It also involves using previously-developed vehicle and stochastic terrain models, and computing the vehicle sinkage, resistance force, tractive force, drawbar pull, and tractive torque.The vehicle model used as a case study has seven degrees of freedom. Each of the four suspension systems is comprised of a nonlinear spring and a viscous (linear or magneto-rheological) damper. An off-road terrain profile is simulated as a 2-D random process using a polynomial chaos approach [Sandu C, Sandu A, Li L. Stochastic modeling of terrain profiles and soil parameters. SAE 2005 transactions. J Commer Vehicles 2005-01-3559]. The soil modeling is concerned with the efficient treatment of the impact of the moisture content on relationships critical in defining the mobility of an off-road vehicle (such as the pressure–sinkage [Sandu C et al., 2005-01-3559] and the shear stress–shear displacement relations). The uncertainties in vehicle parameters and in the terrain profile are propagated through the vehicle model, and the uncertainty in the output of the vehicle model is analyzed [Sandu A, Sandu C, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody system dynamics. Publisher: Springer Netherlands; June 29, 2006. p. 1–23 (23), ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9007-5; Sandu C, Sandu A, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part II: numerical applications. Multibody system dynamics, vol. 15, No. 3. Publisher: Springer Netherlands; 2006. p. 241–62 (22). ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9008-4]. Such simulations can provide the basis for the study of ride performance, handling, and mobility of the vehicle in rough off-road conditions.  相似文献   

18.
The aim of this research was to innovate a new compaction machinery by comparing experimentally the effects of a two-axle, two wheel road roller and a tracked vehicle on the compaction of a decomposed granite sandy soil with a high spreading lift. By measuring the amount of sinkage of the terrain surface, the dry density distribution versus depth using a cone penetrometer, the normal earth pressure distribution versus depth using a stress state transducer (SST), the effects of the road roller and the tracked vehicle on the increment of the soil dry density were considered theoretically. It was observed that the tracked vehicle showed a larger amount of sinkage and a larger dry density distribution versus depth than the roller. The ratio of shear stress to normal stress was still large enough at the deep stratum, so that an optimal shear strain was developed on the whole range of the high lifted stratum and it increased the soil compaction density due to the dilatancy effect.  相似文献   

19.
The tractive performance of a conventional 13.6–38 tractor driving wheel tyre was measured in 19 different fields using the NIAE Single Wheel Tester. In each field the performance was measured on the undisturbed ground and again in the rut formed by a previous run with the same tyre. The second run simulated the operation of the rear wheels on a four-wheel drive tractor.The performance during the second pass was generally better than during the first pass. On average, the coefficient of traction increased by 7%, rolling resistance reduced by 11% and maximum tractive efficiency increased by 5%. The improvement increased as ground conditions deteriorated but was never large enough to fully explain the differences in performance between two and four-wheel drive tractors previously measured. It is suggested, therefore, that these differences may be primarily due to the greater ease with which power, weight, implement size and working speed can be matched with four-wheel drive tractors.  相似文献   

20.
To investigate influences of gravity on mobility of wheeled rovers for future lunar/planetary exploration missions, model experiments of a soil-wheel system were performed on an aircraft during variable gravity maneuvers. The experimental set-up consists of a single rigid wheel and a soil bed with two kinds of dry sands: lunar soil simulant and Toyoura sand. The experimental results revealed that a lower gravity environment yields higher wheel slippage in variable gravity conditions. In addition to the partial gravity experiments, the same experiments with variable wheel load levels were also performed on ground (1 g conditions). The on-ground experiments produced opposite results to those obtained in the partial gravity experiments, where a lower wheel load yields lower slippage in a constant gravity environment. In low gravity environments, fluidity (flowability) of soil increases due to the confining stress reduction in the soil, while the effect of the wheel load on sinkage decreases. As a result, both of these effects are canceled out, and gravity seemingly has no effect on the wheel sinkage. In the meantime, in addition to the effect of wheel load reduction, the increase of the soil flowability lessens the shear resistance to the wheel rotation, as a result of which the wheel is unable to hold sufficient traction in low gravity environments. This suggests that the mobility of the wheel is governed concurrently by two mechanisms: the bearing characteristics to the wheel load, and the shearing characteristics to the wheel rotation. It appears that, in low gravity, the wheel mobility deteriorates due to the relative decrease in the driving force while the wheel sinkage remains constant. Thus, it can be concluded that the lunar and/or Mars’ gravity environments will be unfavorable in terms of the mobility performance of wheels as compared to the earth’s gravity condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号