首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of new inorganic/organic hybrid nanomaterials were prepared through the reaction of cage octa(γ-aminopropylsilsesquioxane) with n-butyl glycidyl ether. The structures and properties of these hybrid materials were characterized by Fourier transform infrared spectroscopy, 29Si nuclear magnetic resonance (NMR), 1H-NMR, and mass spectrometry spectra. The hybrid materials were used for improving mechanical and thermal properties of epoxy resin E-51. The results showed that appropriate amount of addition of the hybrids could enhance the fracture elongation ratio and impact strength. The tensile strength decreased with the addition of the hybrids. The thermal properties such as glass transition temperature, antioxidant index, decomposition temperature, and Vicat softening temperature were obviously improved. Scanning electron microscope observation displayed a rough structure inside the cured epoxy resin by the addition of the hybrids. Kinetic study indicated that the curing process was continuous with average activation energy of 48.06 kJ/mol which was based on Kissinger and Flynn–Wall–Ozawa models.  相似文献   

3.
Organic-inorganic hybrids were prepared using diglycidyl ether of bisphenol A (DGEBA) type epoxy and tetraethoxysilane via the sol-gel process. The DGEBA type epoxy was modified by a coupling agent to improve the compatibility of the organic and inorganic phases. The sol-gel technique was used successfully to incorporate silicon and phosphorus into the network of hybrids increasing flame retardance.Fourier transform infrared spectroscopy and 29Si nuclear magnetic resonance spectroscopy were used to characterize the structure of the hybrids. In condensed siloxane species for TEOS, silicon atoms through mono-, di-, tri-, and tetra-substituted siloxane bonds are designated as Q1, Q2, Q3, Q4, respectively. For 3-isocyanatopropyltriethoxysilane and diethylphosphatoethyltriethoxysilane, mono-, di-, tri-, tetra-substituted siloxane bonds are designated as T1, T2, T3. Results revealed that Q4, Q3, T3 are the major environments forming a network structure. The morphology of the ceramer was examined by scanning electron microscopy and Si mapping. Particle sizes were below 100 nm. The hybrids were nanocomposites. The char yield of pure epoxy resin was 14.8 wt.% and that of modified epoxy nanocomposite was 31 wt.% at 800 °C. A higher char yield enhances the flame retardance. Values of limiting oxygen index of pure epoxy and modified epoxy nanocomposites are 24 and 32, respectively, indicating that modified epoxy nanocomposites possess better flame retardance than the pure epoxy resin.  相似文献   

4.
A diglycidylether sulfone monomer (sulfone type epoxy monomer, SEP) was prepared from bis(4-hydroxyphenyl) sulfone (SDOL) and epichlorohydrin without any NaOH or KOH as basic catalyst. FT-IR, 1H NMR, 13C NMR and mass spectroscopic instruments were utilized to determine the structure of the SEP monomer. The cured SEP epoxy material exhibited not only a higher Tg (163.81 °C) but also a higher Tg than pristine DGEBA (from 111.25 °C to 139.17 °C) when the SEP monomer moiety had been introduced into the DGEBA system. The thermal stability of cured epoxy herein was investigated by thermogravimetric analysis (TGA). The results demonstrated that the sulfone group of the cured SEP material decomposed at lower temperatures and formed thermally stable sulfate compounds, improving char yield and enhancing resistance against thermal oxidation. Additionally, the IPDT and char yield of the cured SEP epoxy (IPDT = 1455.75, char yield = 39.67%) exceeded those of conventional DGEBA epoxy (IPDT = 667.27, char yield = 16.25%).  相似文献   

5.
Modified epoxy nanocomposites containing silicon and phosphorous was prepared and compared with pure epoxy. The study of thermo-oxidative degradation of modified epoxy nanocomposites and pure epoxy has been utilized by thermal analysis. The thermal stability of modified epoxy nanocomposites is not superior to that of the pure epoxy at low temperature, however, the char yield of modified epoxy nanocomposites is higher than that of the pure epoxy at 800 °C in air atmosphere. The modified epoxy nanocomposites possess better thermal stability at high temperature range. The values of the limiting oxygen index of pure epoxy and modified epoxy nanocomposites are 24 and 32, respectively. This indicates that modified epoxy nanocomposites possesses better flame retardance.By the Kissinger’s method, the activation energies of thermo-oxidative degradation for epoxy nanocomposites are less than those of thermo-oxidative degradation for pure epoxy in first stage of thermo-oxidative degradation. However, the activation energies of thermo-oxidative degradation for epoxy nanocomposites are more than those of thermo-oxidative degradation for pure epoxy in second stage of thermo-oxidative degradation.  相似文献   

6.
A phosphorus-containing tri-ethoxysilane (dopo-icteos) reacting from the nucleophilic addition reaction of 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (dopo) and 3-(trieoxysilyl) isocyanate (icteos) was synthesized. The structure of dopo-icteos was confirmed by 1H, 13C, 31P NMR and IR spectra. A triethylamine catalyzed mechanism for the dopo-icteos synthesis was proposed and verified by NMR spectra. The phosphorus-containing epoxy/SiO2 and polyimide/SiO2 nanocomposites were prepared from the in-situ curing of diglycidyl ether of bisphenol A (DGEBA)/4,4-diaminodiphenylmethane(DDM)/dopo-icteos, and imidization of poly(amic acid) of pyromellitic dianhydride (PMDA)/4,4′-oxydianiline (ODA)/dopo-icteos, respectively. The microstructure and morphology were investigated by 29Si NMR, scanning electron microscope (SEM), EDS (Si and P mapping) analysis and atomic force microscope (AFM). The thermal properties, flame retardancy and dielectric properties of the organic-inorganic hybrids were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), limiting oxygen index (LOI), thermal gravimetric analysis (TGA) and dielectric analyzer (DEA).  相似文献   

7.
In this report, a novel phosphorus/silicon‐containing reactive flame retardant, hexa(3‐triglycidyloxysilylpropyl)triphosphazene (HGPP), was synthesized and characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectra (1H, 31P, and 29Si), respectively. To prepare cured epoxy, HGPP had been co‐cured with diglycidyl ether of bisphenol‐A (DGEBA) via 4,4‐diaminodiphenylsulfone as a curing agent. The mechanical, thermal, and flame retardant properties of the cured epoxy were evaluated by dynamic mechanical analysis, thermogravimetric analysis, and limiting oxygen index (LOI). According to these results, it could be found that incorporation of HGPP in the cured epoxy system showed good thermal stability, high LOI values, and high char yield at high temperature. As moderate loading of HGPP in the epoxy system, its storage modulus and glass transition temperature were higher than those of neat DGEBA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Novel modified cyanate ester (CE) resins with decreased dielectric loss, improved thermal stability, and flame retardancy were developed by copolymerizing CE with hyperbranched phenyl polysiloxane (HBPPSi). HBPPSi was synthesized through the hydrolysis of phenyltrimethoxysilane, and its structure was characterized by 1H‐NMR, 29Si‐NMR, and Fourier transform infrared spectra. The effect of the incorporation of HBPPSi into CE resin on the curing behavior, chemical structure of cured networks, and typical performance of HBPPSi/CE resins were systemically evaluated. It is found that the incorporation of HBPPSi into CE network obviously not only catalyzes the curing of CE, but also changes the chemical structure of resultant networks, and thus results in significantly decreased dielectric loss, improved thermal stability, and flame retardancy as well as water absorption resistance. For example, in the case of the modified CE resin with 10 wt% HBPPSi, its limited oxygen index is about 36.0, about 1.3 times of that of neat CE resin, its char yield at 800°C increases from 31.6 to 35.4 wt%; in addition, its dielectric loss is only about 61% of that of neat CE resin at 1 kHz. All these changes of properties are discussed from the view of the structure–property relationship. The significantly improved integrated properties of CE resin provide a great potential to be used as structural and functional materials for many cutting‐edges fields. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Exfoliation through an ionic exchange reaction of layered silicate clays, including synthetic fluorinated mica (Mica) and natural montmorillonite (MMT), were achieved by using polyvalent amine salts as the intercalating agents. The requisite polyamine was synthesized from the epoxy/amine coupling reaction, involving a trifunctional poly(oxypropylene)-triamine (ca. 440 g/mol Mw) and diglycidyl ether of bisphenol-A. The polyamine was a mixture of oligomeric adducts consisting of multiple amine functionalities and a branched backbone. Partial acidification by HCl addition generated a series of amine salts that affected the intercalation and the expansion of the silicate interlayer in the range of 15.2-60.0 Å XRD d spacing. At the specific acidified ratio (H+/amine = 1/3 equiv ratio), the polyamine salts rendered the clay’s layered structure into randomization. The result was confirmed by using XRD and transmission electronic microscopy (TEM). The hybrids of polyamines and Mica or MMT were blended into epoxy resins and cured into nanocomposites, which exhibited the improvements of thermal stability and hardness.  相似文献   

10.
A novel hyperbranched polyphosphate ester (HPPE) was synthesized via the polycondensation of bisphenol-A as an A2 monomer and phosphoryl trichloride as a B3 monomer at 100 °C, without gelation. The initial molar ratio of A2 to B3 was set to be 1.5:1. The final product was precipitated from methanol. 31P NMR spectroscopy was used to monitor the reaction. The formed HPPE was characterized by FTIR and 1H NMR to confirm its end groups. Differential scanning calorimetry data revealed that the cured bisphenol-A epoxy resin with HPPE as a curing agent possessed improved glass transition temperature. Dynamic mechanical thermal analysis also showed the increase in the glass transition temperature. The thermal degradation properties and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI). The results showed that the incorporation of HPPE into bisphenol-A epoxy resin increased its thermal stability and char yield during the decomposition by raising the second stage decomposition temperature. The LOI value increased from 23 to 31 when HPPE, instead of bisphenol-A, was used as a curing agent.  相似文献   

11.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The chemorheological behavior of curing of a resol resin was analyzed under non-isothermal conditions beyond the gelation point. Two heating ramps (0.5 and 1 °C/min) from 0 to 100 °C were performed. The rheological measurements of the resin were performed using oscillatory shear strain. The obtained profiles for the resin’s complex viscosity were applied, after treatment by two calculation methods, to the four- and six-parameter Arrhenius models. These models allow one to establish the viscous flow region of the resin and the kinetic parameters of the material’s curing process. The six-parameter Arrhenius model was selected as the best method for modeling of the resin’s rheological behavior during its curing process. The viscous-flow activation energies determined for the gelled resol resin curing were 67.1 and 58.3 kJ/mol for the 0.5 and 1 °C/min heating rates, respectively. The activation energies of the resin curing process were 41.7 and 67.0 kJ/mol for each temperature ramp.  相似文献   

13.
Nanocomposites from nanoscale silica particles(NS),diglycidylether of bisphenol-A based epoxy(DGEBA),and 3,5-diamino-N-(4-(quinolin-8-yloxy) phenyl) benzamide(DQPB) as curing agent were obtained from direct blending of these materials.The effect of nanosilica(NS) particles as catalyst on the cure reaction of DGEBA/DQPB system was studied by using non-isothermal DSC technique.The activation energy(E_a) was obtained by using Kissinger and Ozawa equations. The E_a value of curing of DGEBA/DQPB/10%NS system showed a decrease of about 10 kJ/mol indicating the catalytic effect of NS particles on the cure reaction.The E_a values of thermal degradation of the cured samples of both systems were 148 kJ/mol and 160 kJ/mol,respectively.The addition of 10%of NS to the curing mixture did not have much effect on the initial decomposition temperature(T_i) but increased the char residues from 20%to 28%at 650℃.  相似文献   

14.
Polyimide‐silica (PI‐SiO2) hybrids were prepared from a novel polyimide (PI), derived from pyromellitic dianhydride (PMDA), 1,6‐bis(4‐aminophenoxy)hexane (synthesized) and 4,4′‐oxydianiline. SiO2 networks (5–30 wt%) were generated through sol–gel process using either tetraethylorthosilicate (TEOS) or a mixture of 3‐aminopropyltriethoxysilane‐PMDA‐based coupling oligomers (APA) and TEOS. Thin, free standing hybrid films were obtained from the respective mixtures by casting and curing processes. The hybrid films were characterized using Fourier transform infrared, 29Si nuclear magnetic resonance (NMR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectrometry and atomic force microscopy (AFM) techniques. 29Si NMR results provide information about formation of organically modified silicate structures that were further substantiated by FE‐SEM and AFM micrographs. Contact angle measurements and thermogravimetric thermograms reveal that the addition of APA profoundly influences surface energy, interfacial tension, thermal stability and the residual char yield of modified hybrids in comparison to those obtained by mixing only TEOS. It was found that reduced particle size, efficient dispersion and improved interphase interactions were responsible for the eventual property enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, two silicon‐containing cycloaliphatic olefins were synthesized through the nucleophilic substitution reactions of cyclohex‐3‐enyl‐1‐methanol with di‐ or tri‐chlorosilane compounds. Then, after epoxidation, two new cycloaliphatic epoxy resins with different epoxy groups were successfully prepared. Their chemical structures were confirmed by 29Si NMR, 1H NMR, and Fourier‐transform infrared spectra (FTIR). The properties of cured products, including viscoelasticity, glass transition temperature (Tg), coefficient of thermal expansion, thermal stability and water absorption, were investigated. Compared to the difunctional epoxy resin, the trifunctional one exhibited a remarkably increased cross‐linking density from 0.82 to 4.08 × 10?3 mol/cm3 and Tg from 157 to 228°C. More importantly, prior to curing, they had viscosities of only 240–290 mPa sec at 25°C, which were much lower than that of ERL‐4221 (409 mPa sec), providing the possibility of easy processing. The high glass transition temperatures, good thermal stabilities, and mechanical properties as well as excellent flowability endow the silicon‐containing epoxy resins with promising potential in microelectronic packaging application. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In the present study, maleimide‐modified epoxide resin containing UV‐curable hybrid coating materials were prepared and coated on polycarbonate substrates in order to improve their surface properties. UV‐curable, bismaleimide‐modified aliphatic epoxy resin was prepared from N‐(p‐carboxyphenyl) maleimide (p‐CPMI) and cycloaliphatic epoxy (Cyracure‐6107) resin. The structure of the bismaleimide modified aliphatic epoxy resin was analyzed by FTIR and the characteristic absorption band for maleimide ring was clearly observed at 3100 cm?1. Silica sol was prepared from tetraethylorthosilicate (TEOS) and methacryloxy propyl trimethoxysilane (MAPTMS) by sol–gel method. The coating formulations with different compositions were prepared from UV‐curable bismaleimide‐based epoxy oligomer and sol–gel mixture. The molecular structure of the hybrid coating material was analyzed by 29Si‐CP/MAS NMR spectroscopy techniques. In the 29Si CP/MAS NMR spectrum of the hybrid coating, mainly two kinds of signals were observed at ?68 and ?110 ppm that correspond to T3 and Q4 peaks, respectively. This result shows that a fully condensed structure was obtained. The thermal and morphological properties of these coatings materials were investigated by using TGA and SEM techniques. Hardness and abrasion resistance properties of coating materials were examined and both were found to increase with sol–gel precursor content of the coating. The photopolymerization kinetics was investigated by using RT‐IR. 70% conversion was attained with the addition of 15 wt% of BMI resin into the acrylate‐based coating formulation. It was found that the UV‐curable organic–inorganic hybrid coatings improved the surface properties of polycarbonate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

18.
A novel flame retardant curing agent for epoxy resin (EP), i.e., a DOPO (9,10-dihydro-9-oxa-10-phosphaphenan-threne-10-oxide)-containing 4,4'-bisphenol novolac (BIP-DOPO) was synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR spectroscopy, and gel permeation chromatography. The epoxy resin cured by BIP-DOPO itself or its mixture with a commonly used bisphenol A-formaldehyde novolac resin (NPEH720) was prepared. The flame retardancy of the cured EP thermosets were studied by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT), and the thermal properties by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that the cured epoxy resin EPNP/BI/3/1, which contains 2.2% phosphorus, possesses a value of 26.2% and achieves the UL 94 V-0 rating. The data from cone calorimeter test demonstrated that the peak release rate, average heat release rate, total heat release decline sharply for the flame retarded epoxy resins, compared with those of pure ones. DSC results show that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA indicates that the incorporation of BIP-DOPO promotes the decomposition of epoxy resin matrix ahead of time and leads to higher char yield. The surface morphological structures of the char residues reveal that the introduction of BIP-DOPO benefits to the formation of a continuous and solid char layer on the epoxy resin material surface during combustion.  相似文献   

19.
Terpolymer (8-HQGF) has been synthesized using the monomers 8-hydroxyquinoline, guanidine, formaldehyde in 1:1:2 molar proportions. The structure of 8-HQGF terpolymer has been elucidated on the basis of elemental analysis and various physicochemical techniques, i.e. UV-Visible, FTIR-ATR and 1H NMR spectroscopy. Detailed thermal degradation study of the new terpolymer has been carried out to ascertain its thermal stability. Thermal degradation curve is discussed which shows two decomposition steps (265-475 °C and 540-715 °C). Sharp-Wentworth and Freeman-Carroll methods have been used to calculate activation energies and thermal stability. The activation energy (Ea) calculated by using the Sharp-Wentworth (21.98 kJ/mol) has been found to be in good agreement with that calculated by Freeman-Carroll (23.57 kJ/mol) method. Thermodynamic parameters such as free energy change (ΔF), entropy change (ΔS), apparent entropy change (S) and frequency factor (Z) have also been evaluated on the basis of the data of Freeman-Carroll method. The order of reaction (n) is found out to be 0.9979.  相似文献   

20.
Silica/monetite nanocomposites were synthesized through controlled hydrolysis of tetraethoxysilane at concentrations of 5, 10, 15, and 20% mol/mol of calcium phosphate forming the solids named CaPSil1, CaPSil2, CaPSil3, and CaPSil4, respectively. XRD patterns showed formation of nanocomposites with a decrease in crystallinity. The NMR 29Si spectra suggested an increase in the content of incorporated silica with reduction of Q3 (–SiOH) signal, which contributes for mass loss, in agreement with thermogravimetry. The incorporation of silica increased the chemical stability of the precursor phosphate in an acidic medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号