首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposites containing natural rubber (NR) as matrix, epoxidized natural rubber (ENR) as compatibilizer and organophilic layered clay (organoclay) as filler were produced in an internal mixer and cured using a conventional sulphuric system. The effects of ENR with 25 (ENR 25) and 50 mol% epoxidation (ENR 50), respectively, were compared at 5 and 10 parts per hundred rubber (phr) concentrations. The organoclay content was fixed at 2 phr. Cure characteristics, clay dispersion, (thermo)mechanical properties of the nanocomposites were determined and discussed. Incorporation of ENR and organoclay strongly affected the parameters which could be derived from Monsanto MDR measurements. Faster cure and increased crosslink density were attributed to changes in the activation/crosslinking pathway which was, however, not studied in detail. The organoclay was mostly intercalated according to X-ray diffraction (XRD) and transmission electron microscopic (TEM) results. The best clay dispersion was achieved by adding ENR 50. This was reflected in the stiffness of the nanocomposites derived from both dynamic mechanical thermal analysis (DMTA) and tensile tests. The tensile and tear strengths of the ENR 50 containing nanocomposites were also superior to the ENR 25 compatibilized and uncompatibilized stocks.  相似文献   

2.
Sodium-montmorillonite (Na-MMT) nanoclay was modified with different concentrations of octadecylamine organic modifying agent at 0.5, 1.0 and 1.5 times the CEC of Na-MMT. Influence of concentration of modifying agent on properties of the organoclays and natural rubber/organoclay nanocomposites was investigated. It was found that the optimum concentration of modifying agent was 1.5 times the CEC of Na-MMT. That is, at this concentration, larger d-spacing of organoclay particles and higher degree of clay dispersion in natural rubber matrix were observed. Larger interlayer d-spacing also caused enhancement of the mechanical properties of the NR/organoclay nanocomposites. Additionally, the NR/organoclay nanocomposites with higher concentration of modifying agent exhibited faster curing reaction with higher crosslink density. Furthermore, the organoclays with larger d-spacing and higher degree of dispersion in the natural rubber matrix exhibited enhancement of the mechanical and dynamic properties and thermal stability of natural rubber/organoclay nanocomposites.  相似文献   

3.
75/25 (wt %) NR/BR blend/clay nanocomposites were prepared via a combined latex/melt intercalation method, for the first time. At first, NR latex was mixed with various amounts of the aqueous sodium montmorillomte (Na-MMT) dispersion. Obtained mixtures were co-coagulated by dilute solution of the sulfuric acid, washed several times with the distilled water and dried under vacuum. The NR/ clay compounds were then mixed with given amounts of the BR and vulcanizing ingredients in a 6-inch two-roll mill and then vulcanized at 150°C in a hot press. The nanocomposites have better mechanical properties than the clay-free NR/BR blend vulcanizates. Furthermore, modulus and hardness (Shore A) increased by increase of the clay loading in the range of 0–15 phr while tensile strength and elongation at break increased with increasing the clay content up to 5 phr and then decreased gradually by further increase of the clay loading. It was concluded from results of the XRD and mechanical test that nanocomposites containing less than 10 phr clay may show the fully exfoliated structure. With increasing the clay content to 10 and 15 phr, both non-exfoliated (stacked layers) and exfoliated structures may be observed simultaneously in the nanocomposites. TGA results indicated an improvement in main and end decomposition by increasing the clay loading.  相似文献   

4.
Rubber blend/clay nanocomposites based on the 50/50 (wt %) natural rubber/butadiene rubber was prepared by the latex method via mixing the latex of 50/50 NR/BR blend with different amounts of the aqueous sodium montmorillonite (Na-MMT) dispersion and co-coagulating the mixture. XRD and TEM were used to characterize structure of the nanocomposites. It was found that fully exfoliated structure could be obtained by this method only when the low loading of layered silicate (up to 5 phr) is used. With increasing the clay content, both non-exfoliated (stacked layers) and exfoliated structures can be observed simultaneously in the nanocomposites. Nanocomposites showed mechanical properties better than the clay-free volcanizate. Moreover, modulus, tensile strength, elongation at break and tear strength increased significantly by increasing the clay amount up to 5 phr and then remained almost constant by further increasing the clay content. Improvement in the mechanical properties by increasing the clay loading up to 5 phr was attributed to the nano-reinforcement effect of Na-MMT. TGA results indicated an improvement in the main decomposition temperature by increasing the clay amount.  相似文献   

5.
Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches. The nanocomposites exhibit smaller Avrami exponent and larger crystallization rate constant, with respect to pristine sPB. Primary crystallization under isothermal conditions displays both athermal nucleation and three-dimensional spherulite growth and under nonisothermal processes the mechanism of primary crystallization becomes very complex. Secondary crystallization shows a lower-dimensional crystal growth geometry for both isothermal and nonisothermal conditions. The activation energy of crystallization of sPB and sPB/organoclay nanocomposites under isothermal and nonisothermal conditions were also calculated based on different approaches.  相似文献   

6.
The vulcanization characteristics of natural rubber (NR)/ethylene-propylene-ethylidenenorbornene (EPDM) rubber blends were studied in the presence of thioacetate-(EPDMTA) or mercapto-modified EPDM (EPDMSH), using oscillating disk rheometer. The effect of both functionalized EPDMs was investigated in unaccelerated-sulfur curing system and accelerated-sulfur curing systems containing 0.4 and 0.8 phr of MBTS. Both EPDMTA and EPDMSH act as accelerator agent in the curing process, as indicated by the higher values of cure rate index and lower values of activation energy of vulcanization. A substantial increase of the crosslink density has been also observed in EPDMSH-modified blends. Both EPDMTA and EPDMSH resulted in an increase in tensile strength, but the best performance has been achieved with EPDMSH, probably because of the increase of crosslink density associated to the reactive compatibilization promoted by the reaction between mercapto groups and rubber matrix. The best ageing resistance has been observed in EPDMTA-modified blends.  相似文献   

7.
Natural rubber (NR) has been modified with 5-15 phr each of cashewnut shell liquid (CNSL) and cashewnut shell liquid-formaldehyde (CNSLF) resin with a view to studying the processability characteristics of the mixes and physicomechanical properties of their vulcanizates. The plasticizing effect of these additives in NR was shown by the reduction in melt viscosity and power consumption during mixing in a Brabender Plasticorder compared to that of unmodified NR. Despite the reduction in chemical crosslink density, the vulcanizates containing 15 phr of CNSL and 5-10 phr of CNSLF showed higher tensile and tear strengths and elongation at break. The higher values of activation energy for thermal decomposition of the vulcanizates containing 15 phr each of CNSL (301 kJ/mol) and CNSLF (372 kJ/mol) than that of the unmodified NR vulcanizate (177 kJ/mol) indicate improvement in thermal stability of NR vulcanizates in presence of the modifiers.  相似文献   

8.
古菊 《高分子科学》2013,31(10):1382-1393
This work focused on the effect of nanocrystalline cellulose (NCC) on the curing characteristics, aging resistance and thermal stability of natural rubber (NR) reinforced with carbon black (CB). Sharing the same fillers loading of 45 parts per hundred rubber (phr), NR/NCC/CB composites with different NCC/CB ratios (i.e. 0/45, 5/40, 10/35, 15/30, 20/25 phr) were prepared and analyzed. Resorcinol and hexamethylene tetramine (RH), acting as the modifier in NR/NCC interface, was also discussed for its influence. The result showed that an relatively higher ratio of NCC/CB led to a lower torque, a shorter cure time (T 90), a slightly longer scorch time (T 10) and a bigger vulcanization rate constant (K). This tendency suggested that the existence of NCC accelerated the vulcanization process. Additionally, modified by RH, NR/NCC/CB compounds exhibited a short T 10 and a elevated torque. And a moderate RH content would lower the E a of vulcanization. A 10 phr substitute of CB by NCC can help to improve aging resistance in terms of mechanical properties. In a high temperature aging condition, composites with 10 phr NCC also performed the highest storage modulus (G′) among composites tested. A moderate NCC content contributed to the best retention of G′ after high temperature aging, so did the incorporation of RH. With the partial replacement of CB by NCC, the temperature of 5% weight-lose had a slight drop and the apparent crosslink density showed a decrease. Thanks to the interaction of RH with both NR and NCC, composites showed an improvement in apparent crosslink density after modified by RH.  相似文献   

9.
Polybenzoxazine (PBZ), which has a structure similar to that of phenolic resin, is formed through the thermal self‐curing of benzoxazine, that is through a heterocyclic ring opening reaction that requires no catalyst and releases no condensation byproducts. We have used the solvent blending method to prepare PBZ/clay nanocomposites possessing various clay contents. We synthesized a monofunctional benzoxazine monomer (MBM) and then treated the clay with this intercalation agent. The results of X‐ray diffraction (XRD) analysis indicated that MBM intercalated into the galleries of the clay; the nanocomposite possessed an exfoliated structure at 3% clay content. To better understand the curing kinetics of the PBZ/clay nanocomposites, we performed dynamic and isothermal differential scanning calorimetry (DSC) measurements. We describe the thermodynamics of the curing process, using all three of the Kissinger, Ozawa, and Kamal models. The Kissinger and Ozawa methods gave fairly close results for the calculated activation energies, which decreased upon increasing the clay content. The Kamal method, based on an autocatalytic model, suggested a total reaction order of between 2.4 and 2.8. The glass transition temperature (Tg) decreased upon increasing the clay content. Thermogravimetric analysis (TGA) indicated that the nanocomposites have higher decomposition temperatures than does the pristine PBZ; this finding suggests an enhancement in their thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 347–358, 2006  相似文献   

10.
Polypropylene/surface modified clay nanocomposites were prepared by melt intercalation in twin-screw extruder followed by blown film extrusion. The effects of organically modified clay on the physical, mechanical, thermal and morphological properties of the prepared nanocomposites were studied. The results showed that 95% enhancement in tensile strength and 152% increase in tensile modulus was observed. TGA analysis in inert atmosphere showed an 87 °C marked increase in the thermal degradation temperature. The DSC curve showed the melting point was increased 4 °C in presence of clay in the matrix owing to the fact that the filler acts as reinforcing effect. The dynamic mechanical analysis (DMA) results showed improvement in storage modulus from 9.76 × 103 to 1.12 × 104 MPa with the incorporation of organically modified clay and thus enhanced its stiffness. The morphology of the nanocomposites was further studied using scanning electron microscopy (SEM). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) which confirmed the exfoliation structure of the nanocomposites.  相似文献   

11.
In order to further improve thermal stability of the phenolic resins, we combined boron and clay with phenolic resins to prepare nanocomposites (BH-B, BP-B, and BE-B series). Boron-containing phenolic resin/clay (montmorillonite) nanocomposites were prepared using in situ polymerization of resol-type phenolic resins. Montmorillonite (MMT) was modified by benzyldimethylhexadecylammonium chloride (BH), benzyldimethyphenylammonium chloride (BP), and benzyltriethylammonium chloride (BE). X-ray diffraction measurements and transmission electron microscope (TEM) observations showed that clay platelets were partially exfoliated after complete curing of the phenolic resins. Thermogravimetric analysis showed that thermal decomposition temperatures (Td) and residual weight at 790 °C of cured boron-containing nanocomposites were much higher than the corresponding nanocomposites without boron. For example, the rise in decomposition temperature of BE-B10% is about 42 °C (from 520 to 566 °C), whereas the increase in char yields is 6.4% (from 66.2% to 72.6%). However, the boron-containing composites were more prone to absorb moisture (ca. 9-14%) than boron-free ones (ca. 3-4%), which was attributed to unreacted or partially reacted boric acid during preparation process.  相似文献   

12.
A series of chitosan derivatives, namely polydiethylamino-ethylmethacrylate-chitosan-graft-copolymer (chitosan-g-DEAEMA), polycarboxy-chitosan-graft copolymer (chitosan-g-COOH), polyvinyl alcohol chitosan-graft-copolymer (chitosan-g-VOH), and carboxymethyl-chitosan (CM-chitosan), were synthesized and investigated as antioxidants for natural rubber (NR) and acrylonitrile butadiene rubber (NBR) mixes and vulcanizates to increase their durability. The rheometric characteristics of the rubber mixes were determined using an oscillating disc rheometer. The physico-mechanical properties of the rubber vulcanized were measured before and after exposure to thermal oxidative aging. It was found that the CM-chitosan had an accelerating effect on the curing process of NR and NBR. Also, the investigated polymers enhanced the properties of rubbers (NR and NBR) especially after ageing up to 7 days compared with commercial antioxidants, such as phenyl ß-naphthylamine (PßN) and N-isopropel-Nphenyl-p-phenylene diamine (IPPD) which are used in the rubber industry. After ageing, the retained values of tensile strength, modulus at 100 % strain, and elongation at break were improved. The optimum concentration of the investigated compounds used to give good properties was found to be 1–2 parts per 100 of rubber (phr). In addition, these prepared polymers showed a decrease in the equilibrium swelling of rubber in toluene which is the proper solvent and consequently increases the crosslink density for rubbers.  相似文献   

13.
甲基丙烯酸镁增强氢化丁腈橡胶的结构与形态和性能   总被引:5,自引:0,他引:5  
用不同份量的甲基丙烯酸镁(MgMA)作增强剂,过氧化二异丙苯(DCP)作硫化剂,通过混炼和硫化过程的原位聚合制备了氢化丁腈橡胶/聚甲基丙烯酸镁(HNBR/PMgMA)纳米复合材料,用XRD、FTIR1、3C-NMR、SEM、TEM、DMA和交联密度分析等方法研究了其结构、形态和性能,并阐述了MgMA改性HNBR的相关机理.结果表明,MgMA在混炼过程中粒径明显变小,部分达到纳米级.硫化过程中发生原位自由基聚合,并部分接枝到HNBR分子链上,HNBR硫化胶和PMgMA有可能形成接枝互穿聚合物网络(接枝IPN).随着MgMA用量的增加,纳米复合材料硫化胶的定伸应力、拉伸强度、扯断伸长率、撕裂强度和热氧老化性能逐渐提高.当MgMA含量为30份时,体系的拉伸强度和扯断伸长率分别为38.5MPa和545%,并具有优异的热空气老化性能.MgMA能明显增加HNBR复合材料的储能模量,并降低其损耗因子.随着MgMA用量的增加,纳米复合材料硫化胶的总交联密度(Ve)和离子键交联密度(Ve2)增加,而共价键交联密度(Ve1)下降,表明离子键对HNBR/PMgMA纳米复合材料的力学性能起重要作用.  相似文献   

14.
A feasibility study was carried out on the utilization of Alkanolamide (ALK) on silica reinforcement of natural rubber (NR) by using a semi-efficient cure system. The ALK was incorporated into the NR compound at 1.0, 3.0, 5.0, 7.0 and 9.0 phr. An investigation was carried out to examine the effect of ALK on the cure characteristics and properties of NR compounds. It was found that ALK gave shorter scorch and cure times for silica-filled NR compounds. ALK also exhibited higher torque differences, tensile modulus, tensile strength, hardness and crosslink density of up to 5.0 phr of ALK loading, and then decreased with further increases of ALK loading. The resilience increased with increased ALK loading. Scanning electron microscopy (SEM) micrographs proved that 5.0 phr of ALK in the silica-filled NR compound exhibited the greatest matrix tearing line and surface roughness due to higher reinforcement level of the silica, as well as better dispersion and cure enhancement.  相似文献   

15.
The present work aims to prepare thermal and oxidation resistant Natural Rubber (NR) composites using antioxidant-modified nanosilica (MNS). The thermo-oxidative aging performance of the composites was evaluated by the variations in mechanical properties after aging at 100 °C for 24 h. The performance was further monitored through Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, and Dynamic Mechanical Analysis. NR nanocomposite with 1–7.5 phr nanosilica (NS) and 3 phr MNS were prepared and its rheological properties were studied. A comparative study of the theoretical models yielded that modified Guth-Gold equation predicted Young's modulus better than other models. Thermal stability of natural rubber MNS composite was improved by 10 °C with pre-eminent mechanical properties like tensile strength and heat build-up. A linear relationship of compression set with modulus of all composites were also established. Equilibrium swelling test revealed improved crosslink density in NR MNS composite. The strong interaction between antioxidant and nanosilica enabled low migration of antioxidant in NR MNS composite. Hence its protective function after aging showed more effective than NR NS composites. These versatile functional properties of NR MNS composite suggest its potential application in electrical, electronic and high performance rubber products.  相似文献   

16.
Zinc oxide (ZnO) nanoparticles are synthesized by polymeric sol–gel method and characterized by X-ray diffraction, field-emission scanning electron microscopy. The cure characteristics, mechanical properties and thermal behaviour of natural rubber (NR) systems containing nano ZnO are investigated and compared to those of NR with micro-sized (conventional) ZnO. The NR vulcanizate with 0.5 phr (parts per hundred parts of rubber) sol–gel derived nano ZnO shows improvement in the curing and mechanical properties in comparison to the NR vulcanizate with 5 phr conventional ZnO. Thermogravimetric analysis reveals that nano ZnO impose better thermal stability than conventional ZnO in the NR vulcanizates. Thus, nano ZnO not only acts as a curing activator but also nano filler to improve the resulting properties of the NR vulcanizates. More essentially nano ZnO leads to the reduction of ZnO level in the NR compounds. Therefore, sol–gel derived nano ZnO diminishes the pollution of aquatic environment due to higher amount of conventional ZnO in rubber compounds.  相似文献   

17.
Summary: Nanocomposites were formulated by curing a sonicated mixture of epoxy resin, C18 clay, and acrylic rubber dispersants. At 5.5 phr (parts per hundred) organoclay loading and a rubber concentration of 15 phr, the tensile‐failure strain of the nanocomposite was found to be higher than that of epoxy nanocomposite, rubber‐dispersed epoxy, and pristine epoxy. A plausible mechanism for improvement of the failure strain of nanocomposites is proposed.

Stress strain curves of filled and unfilled epoxy specimen.  相似文献   


18.
Ternary nanocomposites are prepared by blending hydroxyl‐terminated poly ether ether ketone having pendant methyl groups (PEEKMOH) with epoxy resin along with Nanolin DK1, followed by curing with 4,4′‐diamino diphenyl sulphone. Differential scanning calorimetry shows a two‐stage cure behavior indicating the catalytic effect of the primary amine and proton, which are generated by the dissociation of organic modifier. Tensile and flexural moduli are increased while tensile strength and glass transition temperature are decreased with increase in clay concentration. Fracture toughness and strain at break are increased by 59 and 62%, respectively, with 1 phr clay loading. Transition electron microscopy and X‐ray diffraction (XRD) analysis reveal exfoliated morphology for the nanocomposites. Scanning electron micrographs show a decrease in both, domain size as well as inter domain distance of the thermoplastic phase with the addition of clay, indicating the occurrence of gelation before phase separation. Analysis of the fracture surface reveals crack path deflection and ductile fracture behavior, confirming that toughness has been improved with the addition of clay and PEEKMOH. Coefficient of thermal expansion (CTE) of the nanocomposites is decreased up to 3 phr clay loading. Oxygen gas permeability is compared with Bharadwaj's and Neilson's models. A marginal improvement in thermal stability is observed with the addition of clay. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
董智贤  贾德民 《高分子科学》2013,31(8):1127-1138
Natural rubber grafted maleic anhydride (NR-g-MAH) was synthesized by mixing maleic anhydride (MAH) and natural rubber (NR) in solid state in a torque rheometer using dicumyl peroxide (DCP) as initiator. Then the self-prepared NR-g-MAH was used as a compatibilizer in the natural rubber/short nylon fiber composites. Both the functionalization of NR with MAH and the reaction between the modified rubber and the nylon fiber were confirmed by Fourier transform infrared spectroscopy (FTIR). Composites with different nylon short fiber loadings (0, 5, 10, 15 and 20 phr) were compounded on a two-roll mill, and the effects of the NR-g-MAH on the tensile and thermal properties, fiber-rubber interaction, as well as the morphology of the natural rubber/short nylon fiber composites were investigated. At equal fiber loading, the NR-g-MAH compatibilized NR/short nylon fiber composites showed improved tensile properties, especially the tensile modulus at 100% strain which was about 1.5 times that of the corresponding un-compatibilized ones. The equilibrium swelling tests proved that the incorporation of NR-g-MAH increased the interaction between the nylon fibers and the NR matrix. The crosslink density measured with NMR techniques showed that the NR-g-MAH compatiblized composites had lower total crosslink density. The glass transition temperatures of the compatibilized composites were about 1 K higher than that of the corresponding un-compabilized ones. Morphology analysis of the NR/short nylon fiber composites confirmed NR-g-MAH improved interfacial bonding between the NR matrix and the nylon fibers. All these results signified that the NR-g-MAH could act as a good compatilizer of NR/short nylon fiber composites and had a potential for wide use considering its easy to be prepared and compounded with the composites.  相似文献   

20.
Vulcanization is a vital process in rubber processing, it endows rubber with valuable physical and mechanical properties, making rubber a widely used engineering material. In addition to vulcanization agent, reinforcing fillers play a non-ignorable influence on the vulcanization of rubber nanocomposites. Herein, the effects of cellulose nanocrystals (CNCs) on the vulcanization of natural rubber (NR)/CNCs nanocomposite was studied. It was found that even though the addition of CNCs can effectively improve the dispersion of ZnO in NR matrix, the vulcanization of NR was inhibited. This may be attributed to the CNCs' adsorption of vulcanizing agents (DM, ZnO) and the acidic chemical environment on the surface of CNCs. In order to improve the vulcanization properties of NR/CNCs nanocomposite, tetramethyldithiochloram (TMTD) and triethanolamine (TEOA) were used as a combination accelerator and curing activator, respectively, and polyethylene glycol (PEG) was introduced to screen hydroxyl groups on the surface of CNCs to prohibit the CNCs' adsorption of vulcanizing agents. The results indicate that TMTD and TEOA effectively improved the vulcanization rate of NR/CNCs nanocomposite and increased the crosslink density by an order of magnitude. Subsequently, the tensile strength, tear strength, and so forth. of NR/CNCs nanocomposite were significantly improved. However, PEG hardly help to improve the vulcanization properties of NR/CNCs nanocomposite. In addition, the control samples without CNCs were prepared and characterized, the comparation between NR and NR/CNCs nanocomposite shows that the synergistic effect of crosslink density and CNCs' reinforcement more effectively improve mechanical properties of NR. This work not only elucidates the inhibiting mechanisms of CNCs on the vulcanization of NR, but also provides practical strategies for improving the vulcanization and properties of NR/CNCs nanocomposite. It may accelerate the application of CNCs as rubber reinforcing filler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号