首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional boundary layer of an incompressible viscous fluid is investigated in the presence of velocity and pressure fluctuations. The characteristic Reynolds number is high and, as a consequence, the unsteady (turbulent) boundary layer is thin. An asymptotic approach is used to analyze the complete unsteady Navier–Stokes equations, which makes it possible to separate out the characteristic viscous and inviscid flow zones in the boundary layer and to solve the corresponding problems. The analytical expressions for the viscous fluctuations governed by the Hamel equation with a large value of the parameter are derived.  相似文献   

2.
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, which is an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. Matching these parameters with the skin-friction coefficient and the Reynolds number based on momentum thickness, we get an agreement of the solutions with experimental data in the laminar and transitional boundary layers, as well as in the turbulent boundary layer for moderately large Reynolds numbers.  相似文献   

3.
The modifications of a turbulent boundary layer induced by blowing through a porous plate were investigated using large-eddy simulation. The Reynolds number (based on the length of the plate) of the main flow was about 850000. Large-eddy simulations of such a boundary layer needs a turbulent inflow condition. After a review of available turbulent inflow, we describe in details the condition we developed, which consisted of recycling the velocity fluctuations. Then we show the necessity for this inflow to be non-stationary and to be three dimensional with respect to the mass conservation equation. If these properties are not achieved, we found that the velocity fluctuations do not grow as expected along the domain. Finally, the results of simulations of the boundary layer submitted to blowing are compared with experimental measurements. The good agreement obtained validate our turbulent inflow conditions and also the blowing model used. PACS 47.27.Eq, 47.27.Te, 44.20.+b  相似文献   

4.
《力学快报》2022,12(3):100338
The exact similarity solutions of two dimensional laminar boundary layer were obtained by Blasius in 1908, however, for two dimensional turbulent boundary layers, no Blasius type similarity solutions (special exact solutions) have ever been found. In the light of Blasius’ pioneer works, we extend Blasius similarity transformation to the two dimensional turbulent boundary layers, and for a special case of flow modelled by Prandtl mixing-length, we successfully transform the two dimensional turbulent boundary layers partial differential equations into a single ordinary differential equation. The ordinary differential equation is numerically solved and some useful quantities are produced. For numerical calculations, a complete Maple code is provided.  相似文献   

5.
A mathematical model is presented for analyzing the boundary layer forced convective flow and heat transfer of an incompressible fluid past a plate embedded in a Darcy-Forchheimer porous medium. Thermal radiation term is considered in the energy equation. The similarity solutions for the problem are obtained and the reduced nonlinear ordinary differential equations are solved numerically. It is noticed that the boundary layer decreases with an increase in the value of inertial parameter and in this case the temperature profile is found to decrease smoothly within the boundary layer. In case of porous plate, fluid velocity increases whereas non-dimensional temperature decreases for increasing values of suction parameter. The rate of heat transfer increases with the increasing values of Prandtl number. The effect of thermal radiation on temperature field is also analyzed.  相似文献   

6.
The boundary layer flow and heat transfer of a fluid through a porous medium towards a stretching sheet in presence of heat generation or absorption is considered in this analysis. Fluid viscosity is assumed to vary as a linear function of temperature. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling group of transformations. These transformations are used to convert the partial differential equations corresponding to the momentum and the energy equations into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing temperature-dependent fluid viscosity parameter up to the crossing-over point but increases after that point and the temperature decreases in this case. With the increase of permeability parameter of the porous medium the fluid velocity decreases but the temperature increases at a particular point of the sheet. Effects of Prandtl number on the velocity boundary layer and on the thermal boundary layer are studied and plotted.  相似文献   

7.
This study presents an analysis of the axisymmetric flow of a non-Newtonian fluid over a radially stretching sheet. The momentum equations for two-dimensional flow are first modeled for Sisko fluid constitutive model, which is a combination of power-law and Newtonian fluids. The general momentum equations are then simplified by invoking the boundary layer analysis. Then a non-linear ordinary differential equation governing the axisymmetric boundary layer flow of Sisko fluid over a radially stretching sheet is obtained by introducing new suitable similarity transformations. The resulting non-linear ordinary differential equation is solved analytically via the homotopy analysis method (HAM). Closed form exact solution is then also obtained for the cases n=0 and 1. Analytical results are presented for the velocity profiles for some values of governing parameters such as power-law index, material parameter and stretching parameter. In addition, the local skin friction coefficient for several sets of the values of physical parameter is tabulated and analyzed. It is shown that the results presented in this study for the axisymmetric flow over a radially non-linear stretching sheet of Sisko fluid are quite general so that the corresponding results for the Newtonian fluid and the power-law fluid can be obtained as two limiting cases.  相似文献   

8.
基于标准k-ε湍流模型,首先利用湍流粘度方程和剪切应力在整个边界层内恒定的假设,推导出一类耗散率表达式,并根据常用的湍动能入口剖面方程以及平均风速剖面方程,计算获得相应的耗散率方程;然后在输运方程中添加自定义源项,通过已经确定的平均速度方程、湍动能方程、耗散率方程计算得到相应输运方程的自定义源项表达式,并进行空风洞数值模拟,从而得到了一类满足平衡大气边界层的来流边界条件.通过将这种边界条件与由湍流平衡条件得到的边界条件进行比较,表明本方法获得的边界条件更适用.并且,本方法无需考虑修正壁面函数和修正湍流模型常数,因而计算更为简单,可为平衡大气边界层的研究提供一种新的思路.  相似文献   

9.
An analysis is performed to present a new self-similar solution of unsteady mixed convection boundary layer flow in the forward stagnation point region of a rotating sphere where the free stream velocity and the angular velocity of the rotating sphere vary continuously with time. It is shown that a self-similar solution is possible when the free stream velocity varies inversely with time. Both constant wall temperature and constant heat flux conditions have been considered in the present study. The system of ordinary differential equations governing the flow have been solved numerically using an implicit finite difference scheme in combination with a quasilinearization technique. It is observed that the surface shear stresses and the surface heat transfer parameters increase with the acceleration and rotation parameters. For a certain value of the acceleration parameter, the surface shear stress in x-direction vanishes and due to further reduction in the value of the acceleration parameter, reverse flow occurs in the x–component of the velocity profiles. The effect of buoyancy parameter is to increase the surface heat transfer rate for buoyancy assisting flow and to decrease it for buoyancy opposing flow. For a fixed buoyancy force, heating by constant heat flux yields a higher value of surface heat transfer rate than heating by constant wall temperature.  相似文献   

10.
The solid particle dispersion in saltating motion is studied in an homogeneous turbulence and in a turbulent boundary layer. The fluid velocity along the particle trajectory is estimated using a continuous stochastic differential equation in which the correlation integral time takes into account gravity and inertia effects. As far as the boundary layer is concerned, the aerodynamic entrainment of particles and the rebound are modelised as random variables with Gaussian probability density functions. Compared with experimental results, the numerical results show good agreement for dispersion, although velocity fluctuations are slightly under evaluated. To cite this article: C. Aguirre et al., C. R. Mecanique 332 (2004).  相似文献   

11.
本文采用时间解析的二维粒子图像测速技术,对零压力梯度光滑以及汇聚和发散沟槽表面平板湍流边界层统计特性和流动结构进行了研究.结果表明在垂直于汇聚和发散沟槽表面的对称平面内,相对于光滑壁面,发散沟槽壁面使当地边界层厚度、壁面摩擦阻力、湍流脉动、雷诺应力等明显减小;而汇聚沟槽壁面对湍流边界层特性和流动结构的影响正好相反,汇聚沟槽使壁面流体有远离壁面向上运动的趋势,因而导致边界层厚度增加了约43%;同时,在汇聚沟槽表面情况下流向大尺度相干结构更容易形成,这对减阻是不利的.此外,顺向涡数量在湍流边界层的对数区均存在一个极大值,发散沟槽表面所对应的极大值位置更靠近沟槽壁面,而在汇聚沟槽表面则有远离壁面的趋势,由顺向涡诱导产生的较强的喷射和扫掠运动会在湍流边界层中产生较强的剪切作用,顺向涡数量的减少是发散沟槽壁面当地摩擦阻力降低的主要原因.  相似文献   

12.
In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data.  相似文献   

13.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated.  相似文献   

14.
Swati Mukhopadhyay 《Meccanica》2013,48(7):1717-1730
Similarity analysis is performed to investigate the structure of the boundary layer stagnation-point flow and heat transfer over a stretching sheet subject to suction. Fluid viscosity is assumed to vary as a linear function of temperature. Thermal radiation term is considered in the energy equation. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling group of transformations. With the help of them the partial differential equations corresponding to momentum and energy equations are transformed into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity increases with the increasing values of the ratio of the free stream velocity to the stretching velocity. Velocity increases with the increasing temperature dependent fluid viscosity parameter when the free-stream velocity is less than the stretching velocity but opposite behavior is noted when the free-stream velocity is greater than the stretching velocity. Due to suction, fluid velocity decreases at a particular point of the surface. Temperature at a point of the surface is found to decrease with increasing thermal radiation.  相似文献   

15.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析   总被引:2,自引:0,他引:2  
蔡书鹏  杨林  唐川林 《力学学报》2008,40(2):250-254
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB 表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边 界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速 度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的 速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB 水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成 项减小最终降低流体的输送动力.  相似文献   

16.
High-Velocity Laminar and Turbulent Flow in Porous Media   总被引:1,自引:0,他引:1  
We model high-velocity flow in porous media with the multiple scale homogenization technique and basic fluid mechanics. Momentum and mechanical energy theorems are derived. In idealized porous media inviscid irrotational flow in the pores and wall boundary layers give a pressure loss with a power of 3/2 in average velocity. This model has support from flow in simple model media. In complex media the flow separates from the solid surface. Pressure loss effects of flow separation, wall and free shear layers, pressure drag, flow tube velocity and developing flow are discussed by using phenomenological arguments. We propose that the square pressure loss in the laminar Forchheimer equation is caused by development of strong localized dissipation zones around flow separation, that is, in the viscous boundary layer in triple decks. For turbulent flow, the resulting pressure loss due to average dissipation is a power 2 term in velocity.  相似文献   

17.
18.
用平均速度剖面法测量壁湍流摩擦阻力   总被引:10,自引:1,他引:9  
樊星  姜楠 《力学与实践》2005,27(1):28-30
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法.  相似文献   

19.
The turbulent/non-turbulent interface (TNTI) in an adverse pressure gradient (APG, β = 1.45) turbulent boundary layer (TBL) is explored here by using direct numerical simulation (DNS) data; β is the Clauser pressure gradient parameter. For comparison, the DNS data for a zero pressure gradient (ZPG) TBL is included. The interface is extracted with an approach based on enstrophy criteria. Depending on the enstrophy, the outer boundary layer flow can be classified into the free stream, boundary layer wake, and intermittent flow regimes. The fractal dimension of the interface is obtained by using the box-counting algorithm, and was found to be constant over a long range of box sizes. The TNTI shows a monofractal behavior. The geometric complexity of a TNTI can be determined in terms of the genus, which is defined as the number of handles in a geometric object. We examine the volume and projection area of the genus of the TNTI to analyze the entrainment process. The geometric complexity of the APG TBL interface and the local entrainment are greater than those of the ZPG TBL, as is evident in the increases in the genus near the interface. The local entrainment velocity is dominantly affected by the viscous diffusion at the interface.  相似文献   

20.
The three-dimensional velocity fluctuation effects on heat transfer enhancement were experimentally investigated using a wind tunnel system and cylinders placed upstream of the test section in the wind tunnel. The cylinders with different diameters were used as turbulators to generate vortical flow motions with three-dimensional velocity fluctuations. A heated plate, part of the tunnel wall, was placed far downstream of the cylinders such that it was subjected mainly to flows with velocity fluctuations but with negligible steady vortical motions. These studies included three-component velocity measurements to characterize the near-wall and cross-section velocity fields and to obtain the turbulent kinetic energy. The temperatures were measured by thermocouples on the heated plate to obtain the convection heat transfer coefficients and the Nusselt numbers. Results indicate that the heat transfer was enhanced by the velocity fluctuations, which is attributed to the modification of boundary layer velocity profiles without the modification of boundary layer thickness. The resulting normalized Nusselt number was approximately a parabolic function of a dimensionless parameter, the product of Reynolds number and normalized turbulent kinetic energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号