首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rheological measurements were performed to examine the yielding behavior of capillary suspensions prepared by mixing cocoa powder as dispersed phase, vegetable oil as the continuous primary fluid, and water as the secondary fluid. Here, we investigated the yielding behavior of solid-fluid-fluid systems with varying particle volume fraction, ?, spanning the regime from a low volume fraction (? = 0.25) to a highly filled regime (? = 0.65) using dynamic oscillatory measurements. While for ? ≤ 0.4 with a fixed water volume fraction (? w ) of 0.06 as the secondary fluid, capillary suspensions exhibited a single yield point due to rupturing of aqueous capillary bridges between the particles, while capillary suspensions with ? ≥ 0.45 showed a two-step yielding behavior. On plotting elastic stress (G γ) as a function of applied strain (γ), two distinct peaks, indicating two yield stresses, were observed. Both the yield stresses and storage modulus at low strains were found to increase with ? following a power law dependence. With increasing ? w (0 – 0.08) at a fixed ? = 0.65, the system shifted to a frustrated, jammed state with particles strongly held together shown by rapidly increasing first and second yield stresses. In particular, the first yield stress was found to increase with ? w following a power law dependence, while the second yield stress was found to increase exponentially with ? w . Transient steady shear tests were also performed. The single stress overshoot for ? ≤ 0.4 with ? w = 0.06 reflected one-step yielding behavior. In contrast, for high ? (≥ 0.45) values with ? w = 0.06, two stress overshoots were observed in agreement with the two-step yielding behavior shown in the dynamic oscillatory measurements. Experiments on the effect of resting time on microstructure recovery demonstrated that aggregates could reform after resting under quiescent conditions.  相似文献   

2.
As part of a study of viscous and elastic behaviors, over a range of temperatures from below the glass transition up to the hot melt, we here report steady-shear viscosities at 0.007 to 13 s?1 and at 160 to 220 °C of polystyrene containing 0 to 60% by mass of 0.18-micron diameter titanium dioxide particles. The materials were shearthinning without a yield stress, with a constant activation energy at constant stress, but having a shear-dependent activation energy at constant shear rate — proportional to the volume fraction of the polymer matrix. Superposition of the flow curves at different temperatures for the unfilled and filled systems was possible. All the data were represented by one equation with four parameters: 1) a shear stress coefficient (units Pa · s2); 2) a characteristic stress level for non-Newtonian behavior, independent of temperature and composition; 3) an activation energy at constant stress; and 4) an Einstein coefficient (or intrinsic viscosity of the filler). Other equations also fitted the data, but the others diverged widely when extrapolated.  相似文献   

3.
The current work presents the characterization and comparison of the mechanical response of three different industrial forms of polyethylene. Specifically, high-density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), and cross-linked polyethylene (PEX) were tested in compression as a function of temperature (−75 to 100°C) and strain-rate (10−4 to 2,600 s−1). The responses of UHMWPE and PEX are very similar, whereas HDPE exhibits some differences. The HDPE samples display a significantly higher yield stress followed by a flat flow behavior. Conversely UHMWPE and PEX both exhibit significant strain hardening after yield. The temperature and strain-rate dependence are captured by simple linear and logarithmic fits over the full range of conditions investigated. The yield behavior is presented in terms of an empirical mapping function that is extended to analytically solve for the mapping constant. The power-law dependence on strain-rate observed in some polymers is explained using this mapping function.  相似文献   

4.
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes.  相似文献   

5.
This paper reports the influence of activator type and concentration on the rheological properties of alkali-activated fly ash suspensions. A thorough investigation of the rheological influences (yield stress and plastic viscosity) of several activator parameters, including: (i) the cation type and concentration of alkali hydroxide and (ii) the alkali-to-binder ratio (n) and silica modulus (Ms), and (iii) the volume of the activation solution, on the suspension rheology is presented. The results indicate a strong dependence on the cation and its concentration in the activation solution. The viscosity of the activation solution and the volumetric solution-to-powder ratio are shown to most strongly influence the plastic viscosity of the suspension. The suspension yield stress is predominantly influenced by the changes in fly ash particle surface charge and the ionic species in the activator. A shift from non-Newtonian to Newtonian flow behavior is noted in the case of silicate-based suspensions for Ms?≤?1.5. This behavior, which is not observed at higher MS values, or when the fly ash is dispersed in hydroxide solutions or pure water, is hypothesized to be caused by colloidal siliceous species present in this system, or surface charge effects on the fly ash particles. Comparisons of the rheological response of alkali-activated suspensions to that of portland cement-water suspensions are also reported.  相似文献   

6.
The combined effect of dislocation source strength τs, dislocation obstacle strength τobs, and obstacle spacing Lobs on the yield stress of single crystal metals is investigated analytically and numerically. A continuum theory of dislocation pileups emanating from a finite-strength source and impinging on asymmetric obstacles gives a closed-form expression for the yield stress. A 2d discrete dislocation model for a single-source/obstacle problem agrees well with the analytic model over a wide range of material parameters. Discrete dislocation simulations for a full tensile bar with statistically distributed sources and obstacles show that the distribution of obstacles plays a significant role in controlling the yield stress. Over a wide range of parameters, the simulations agree well with the analytic model using an effective obstacle spacing Lobs* chosen to capture the strength-controlling statistically weaker pileup configurations. The analytic model can thus be used to guide the choice of source and obstacle parameters to obtain a desired yield stress. The model also shows how different combinations of internal source and obstacle parameters can generate the same macroscopic yield stress, and points to several internal length scales that could relate to size-dependent plasticity phenomena.  相似文献   

7.
Electrorheological (ER) fluids composed of α-Fe2O3 (hematite) particles suspended in silicone oil are studied in this work. The rheological response has been characterized as a function of field strength, shear rate and volume fraction. Rheological tests under DC electric fields elucidated the influence of the electric field strength, E, and volume fraction, ϕ, on the field-dependent yield stress, τy. It was found that this quantity scales with E and ϕ with a linear and parabolic dependence, respectively. The viscosities of electrified suspensions were found to increase by several orders of magnitude as compared to the unelectrified suspension at low shear rates, although at high-shear rates hydrodynamic effects become dominant and no effects of the electric field on the viscosity are observed. The work is completed with the analysis of microscopic observations of the structure acquired by the ER fluid upon application of a constant electric field. Electrohydrodynamic convection is found to be the origin of the ER response rather than the commonly admitted particle fibrillation. This fact can provide an explanation to the relationship between yield stress and electric field strength as well as the pattern of periodic structures observed in the measurement geometries.  相似文献   

8.
Large strain compression data (true strains to about ?3.0) are presented for polycrystalline α U and α Fe at room temperature. The results, together with other published data at low homologous temperatures (≈0.2 Tm), where Tm is the absolute melting temperature, suggest that a steady-state flow stress σs is approached after extensive strain-hardening, α U exhibits a very high strain-hardening rate, with σs ≈ 2900 MPa (420 ksi) indicating that cold-working is a very potent method of strengthening this metal. All the data evaluated can be fit by the stress-strain relation σ = σs? exp (?(Nε)p)(σs? σy), where σy is the yield stess, p is a constant equal to a for the metals analyzed, N is a constant associated with the strain-hardening characteristics of a material, σ is true stress, and ε is true strain.  相似文献   

9.
The objective is to investigate energy dissipation mechanisms that operate at different length scales during fracture in ductile materials. A dimensional analysis is performed to identify the sets of dimensionless parameters which contribute to energy dissipation via dislocation-mediated plastic deformation at a crack tip. However, rather than using phenomenological variables such as yield stress and hardening modulus in the analysis, physical variables such as dislocation density, Burgers vector and Peierls stress are used. It is then shown via elementary arguments that the resulting dimensionless parameters can be interpreted in terms of competitions between various energy dissipation mechanisms at different length scales from the crack tip; the energy dissipations mechanisms are cleavage, crack tip dislocation nucleation and also dislocation nucleation from a Frank-Read source. Therefore, the material behavior is classified into three groups. The first two groups are the well-known intrinsic brittle and intrinsic ductile behavior. The third group is designated to be extrinsic ductile behavior for which Frank-Read dislocation nucleation is the initial energy dissipation mechanism. It is shown that a material is predicted to exhibit extrinsic ductility if the dimensionless parameter disl1/2 (b is Burgers vector, ρdisl is dislocation density) is within a certain range defined by other dimensionless parameters, irrespective of the competition between cleavage and crack tip dislocation nucleation. The predictions compare favorably to the documented behavior of a number of different classes of materials.  相似文献   

10.
In determining structure–property relations for plasticity at different size scales, it is desired to bridge concepts from the continuum to the atom. This raises many questions related to volume averaging, appropriate length scales of focus for an analysis, and postulates in continuum mechanics. In a preliminary effort to evaluate bridging size scales and continuum concepts with descritized phenomena, simple shear molecular dynamics simulations using the Embedded Atom Method (EAM) potentials were performed on single crystals. In order to help evaluate the continuum quantities related to the kinematic and thermodynamic force variables, finite element simulations (with different material models) and macroscale experiments were also performed. In this scoping study, various parametric effects on the stress state and kinematics have been quantified. The parameters included the following: crystal orientation (single slip, double slip, quadruple slip, octal slip), temperature (300 and 500 K), applied strain rate (106–1012 s−1), specimen size (10 atoms to 2 μm), specimen aspect ratio size (1:8–8:1), deformation path (compression, tension, simple shear, and torsion), and material (nickel, aluminum, and copper). Although many conclusions can be drawn from this work, which has provided fodder for more studies, several major conclusions can be drawn.
• The yield stress is a function of a size scale parameter (volume-per-surface area) that was determined from atomistic simulations coupled with experiments. As the size decreases, the yield stress increases.
• Although the thermodynamic force (stress) varies at different size scales, the kinematics of deformation appears to be very similar based on atomistic simulations, finite element simulations, and physical experiments.
Atomistic simulations, that inherently include extreme strain rates and size scales, give results that agree with the phenomenological attributes of plasticity observed in macroscale experiments. These include strain rate dependence of the flow stress into a rate independent regime; approximate Schmid type behavior; size scale dependence on the flow stress, and kinematic behavior of large deformation plasticity.  相似文献   

11.
Previous investigations on the effects of strain-rate and temperature histories on the mechanical behavior of steel are briefly reviewed. A study is presented on the influence of strain rate and strain-rate history on the shear behavior of a mild steel, over a wide range of temperature Experiments were performed on thin-walled tubular specimens of short gage length, using a torsional split-Hopkinson-bar apparatus adapted to permit quasi-static as well as dynamic straining at different temperatures. The constant-rate behavior was first measured at nominal strain rates of 10?3 and 103 s?1 for ?150, ?100, ?50, 20, 200 and 400°C. Tests were then carried out, at the same temperatures, in which the strain rate was suddenly increased during deformation from the lower to the higher rate at various large values of plastic strain. The increase in rate occurred in a time of the order of 20 μs so that relatively little change of strain took place during the jump. The low strain-rate results show a well-defined elastic limit but no yield drop, a small yield plateau is found at room temperature. The subsequent strain hardening shows a maximum at 200°C, when serrated flow occurs and the ductility is reduced. The high strain-rate results show a considerable drop of stress at yield. The post-yield flow stress decreases steadily with increasing temperature, throughout the temperature range investigated. At room temperature and below, the strain-hardening rate becomes negative at large strains. The adiabatic temperature rise in the dynamic tests was computed on the assumption that the plastic work is entirely converted to heat. This enabled the isothermal dynamic stress-strain curves to be calculated, and showed that considerable thermal softening took place. The initial response to a strain-rate jump is approximately elastic, and has a magnitude which increases with decrease of testing temperature; it is little affected by the amount of prestrain. At 200 and 400° C, a yield drop occurs after the initial stress increment. The post-jump flow stress is always greater than that for the same strain in a constant-rate dynamic test, the strain-hardening rate becoming negative at large strains or low testing temperature. This observed effect of strain-rate history cannot be explained by the thermal softening accompanying dynamic deformation. These and other results concerning total ductility under various strain-rate and temperature conditions show that strain-rate history strongly affects the mechanical behavior of the mild steel tested and, hence, should be taken into account in the formulation of constitutive equations for that material.  相似文献   

12.
To describe the work hardening process of polycrystals processed using various thermomechanical cycles with isochronal annealing from 500 to 900 °C, a dislocation based strain hardening model constructed in the basis of the so-called Kocks–Mecking model is proposed. The time and temperature dependence of flow stress is accounted via grain boundary migration, and the migration is related to annihilation of extrinsic grain boundary dislocations (EGBD’s) by climb via lattice diffusion of vacancies at the triple points. Recovery of yield stress is associated with changes in the total dislocation density term ρT. A sequence of deformation and annealing steps generally result in reduction of flow stress via the annihilation of the total dislocation density ρT defined as the sum of geometrically necessary dislocations ρG and statistically stored dislocations ρS. The predicted variation of yield stress with annealing temperature and cold working stages is in agreement with experimental observations. An attempt is made to determine the mathematical expressions which best describe the deformation behaviour of polycrystals in uniaxial deformation.  相似文献   

13.
Steady shear rheological measurements were carried out on aqueous solutions containing 15 mM cetyltrimethylammonium bromide (CTABr) and a constant value of [MX] and temperature for MX = 2,3-; 2,4-; 2,5-; 2,6-; 3,4-; and 3,5-Cl2BzNa with Bz?representing C6H3CO2?. Plots of zero shear viscosity (η 0) vs. [MX] at 35 °C and 15 mM CTABr show the presence of single maximum and double maxima for MX = 2,3- and 3,5-Cl2BzNa, respectively. Turbidity data (absorbance at 600 nm vs. [MX]) coupled with η 0vs. [MX] data at 35 °C reveal indirectly the presence of vesicles along with wormlike micelles (WM) at MX / CTABr > 0. 7 for MX = 3,5-Cl2BzNa. Temperature dependence of η 0in the vicinity of the viscosity maximum shows nonlinear and linear Arrhenius behavior, within the temperature range of 20–55 °C, for MX = 2,3-; 2,4-; 2,5-; 3,4-; and 3,5-Cl2BzNa, respectively. The values of η 0, $\dot {\gamma }_{\text {cr}} $ (critical shear rate), and flow activation energy correlate with CTABr micellar binding constants of counterions.  相似文献   

14.
In this paper, the magnetorheological (MR) and magnetoviscous properties of ferrofluid-based iron particle suspensions were investigated. The 2.1-µm mean size Fe particles were dispersed in high-concentration transformer oil-based ferrofluid, the iron particle volume fraction in the resulting nano-micro composite magnetorheological fluid samples varying from Φ Fe = 5 to 40 %. The ferrofluid carrier has φ p = 23 % solid volume fraction of magnetic nanoparticles stabilized with chemisorbed oleic acid monolayer and without any excess surfactant. In the absence of the field, the ferrofluid has a quasi-Newtonian behavior with a weak shear thinning tendency. The static yield stress shows an increase of about 3 orders of magnitude for an iron particle content of approx. Φ Fe = 25 % (Φ tot = 42.25 %), while above this value, a saturation tendency is observed. The dynamic yield stress (Bingham model) also increases with the magnetic induction and the particle volume fraction; however, the saturation of the MR effect is less pronounced. The relative viscosity change has a maximum at Φ Fe = (10–15) % due to the accelerated increase of the effective viscosity of the composite for higher Fe content. Addition of micrometer-sized iron particles to a concentrated ferrofluid without any supplementary stabilizing agent proved to be a direct and simple way to control the magnetorheological and magnetoviscous behavior, as well as the saturation magnetization of the resulting nano-micro composite fluid to fulfill the requirements of their use in various MR control and rotating seal devices.  相似文献   

15.
In this paper, we formulated an atomically-equivalent continuum model to study the viscoplastic behavior of nanocrystalline materials with special reference to the low end of grain size that is typically examined by molecular dynamic (MD) simulations. Based on the morphology disclosed in MD simulations, a two-phase composite model is construed, in which three distinct inelastic deformation mechanisms disclosed from MD simulations are incorporated to build a general micromechanics-based homogenization scheme. These three mechanisms include the dislocation-related plastic flow inside the grain interior, the uncorrelated atomic motions inside the grain-boundary region (the GB zone), and the grain-boundary sliding at the interface between the grain and GB zone. The viscoplastic behavior of the grain interior is modeled by a grain-size dependent unified constitutive equation whereas the GB zone is modeled by a size-independent unified law. The GB sliding at the interface is represented by the Newtonian flow. The development of the rate-dependent, work-hardening homogenization scheme is based on a unified approach starting from elasticity to viscoelasticity through the correspondence principle, and then from viscoelasticity to viscoplasticity through replacement of the Maxwell viscosity of the constituent phases by their respective secant viscosity. The developed theory is then applied to examine the grain size- and strain rate-dependent behavior of nanocrystalline Cu over a wide range of grain size. Within the grain-size range from 5.21 to 3.28 nm, and the strain rate range from 2.5 × 108 to 1.0 × 109/s, the calculated results show significant grain-size softening as well as strain-rate hardening that are in quantitative accord with MD simulations [Schiotz, J., Vegge, T., Di Tolla, F.D., Jacobsen, K.W., 1999. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971–11983]. We have also applied the theory to investigate the flow stress, strain-rate sensitivity, and activation volume over the wider grain size range from 40 nm to as low as 2 nm under these high strain rate loading, and found that the flow stress initially displays a positive slope and then a negative one in the Hall–Petch plot, that the strain-rate sensitivity first increases and then decreases, and that the activation volume first decreases and then increases. This suggests that the maximum strain rate sensitivity and the lowest activation volume do not occur at the smallest grain size but, like the maximum yield strength (or hardness), they occur at a finite grain size. These calculated results also confirm the theoretical prediction of Rodriguez and Armstrong [Rodriguez, P., Armstrong, R.W., 2006. Strength and strain rate sensitivity for hcp and fcc nanopolycrystal metals. Bull. Mater. Sci. 29, 717–720] on the basis of grain boundary weakening and the report of Trelewicz and Schuh [Trelewicz, J.R., Schuh, C.A., 2007. The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 55, 5948–5958] on the basis of hardness tests. In general the higher yield strength, higher strain rate sensitivity, and lower activation volume on the positive side of the Hall–Petch plot are associated with the improved yield strength of the grain interior, but the opposite trends displayed on the negative side of the plot are associated with the characteristics of the GB zone which is close to the amorphous state.  相似文献   

16.
A systematic study of the rheological properties of solutions of non-motile microalgae (Chlorella vulgaris CCAP 211-19) in a wide range of volume fractions is presented. As the volume fraction is gradually increased, several rheological regimes are observed. At low volume fractions (but yet beyond the Einstein diluted limit), the suspensions display a Newtonian rheological behaviour and the volume fraction dependence of the viscosity can be well described by the Quemada model (Quemada, Eur Phys J Appl Phys 1:119–127, 1997). For intermediate values of the volume fraction, a shear thinning behaviour is observed and the volume fraction dependence of the viscosity can be described by the Simha model (Simha, J Appl Phys 23:1020–1024, 1952). For the largest values of the volume fraction investigated, an apparent yield stress behaviour is observed. Increasing and decreasing stress ramps within this range of volume fractions indicate a thixotropic behaviour as well. The rheological behaviour observed within the high concentration regime bears similarities with the measurements performed by Heymann and Aksel (Phys Rev E 75:021505, 2007) on polymethyl methacrylate suspensions: irreversible flow behaviour (upon increasing/decreasing stresses) and dependence of the flow curve on the characteristic time of forcing (the averaging time per stress values). All these findings indicate a behaviour of the microalgae suspensions similar to that of suspensions of rigid particles. A deeper insight into the physical mechanisms underlying the shear thinning and the apparent yield stress regime is obtained by an in situ analysis of the microscopic flow of the suspension under shear. The shear thinning regime is associated to the formation of cell aggregates (flocs). Based on the Voronoi analysis of the correlation between the cell distribution and cell sizes, we suggest that the repulsive electrostatic interactions are responsible for this microscale organisation. The apparent yield stress regime originates in the formation of large-scale cell aggregates which behave as rigid plugs leading to a maximally random jammed state.  相似文献   

17.
The temperature dependence of the yield stress τ* Ni 3 Ge single crystals is studied. The temperature dependence τ*(T) in the high-temperature region (above 420 K) is found to be conditioned by thermally activated accumulation of the density of non-screw components of superdislocations. Interaction of point defects with edge dislocations and its effect on the temperature anomaly of the yield stress in Ni 3 Ge single crystals are analyzed. The calculated results are found to agree with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 154–161, July–August, 2007.  相似文献   

18.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

19.
An expression for the yield stress of anisotropic materials is applied to the anisotropic strength of hard rolled copper foils whose crystallographic texture is known. We assume that this crystallographic texture is the only cause of the anisotropic plastic behaviour of the material. The model used for the yield stress is also used to deduce:
  1. Stress-strain relations for isotropic polycrystalline materials;
  2. A formula for the fully plastic strain tensor, applied to anisotropic hard rolled copper foils.
For the anisotropic copper foils considered the calculated curves of the yield stress and of the strain tensor as a function of the angle x between rolling and tensile direction agree qualitatively with the measured values. However, the theory is not complete, since the yield stress and the plastic strain tensor are both a function of a parameter Q, the fraction of the number of available crystallographic slip planes on which the maximum shear stress has reached the critical value τa. We assume that for “fully” plastic deformation a certain critical fraction Q e of the total number of slip planes has to be active. The fraction Q e is called the critical active quantity. With the parameter Q e we adjust the calculated curves to the measured ones. The dependence of Q e on the properties of the material (e.g. the crystallographic texture) is discussed in Appendix I.  相似文献   

20.
Impact of wall slip on the yield stress measurement is examined for capillary suspensions consisting of cocoa powder as the dispersed phase, vegetable oil as the continuous primary fluid, and water as the secondary fluid using smooth and serrated parallel plates. Using dynamic oscillatory measurements, we investigated the yielding behavior of this ternary solid-fluid-fluid system with varying particle volume fraction, ?, from 0.45 to 0.65 and varying water volume fraction, ?w, from 0.02 to 0.08. Yield stress is defined as the maximum in the elastic stress (Gγ), which is obtained by plotting the product of elastic modulus (G) and strain amplitude (γ) as a function of applied strain amplitude. With serrated plates, which offer minimal slippage, capillary suspensions with ? ≥?0.45 and a fixed ?w =?0.06 showed a two-step yielding behavior as indicated by two peaks in the plots of elastic stress as a function of strain amplitude. On the other hand with smooth plates, the capillary suspensions showed strong evidence of wall slip as evident by the presence of three distinct peaks and lowered first yield stresses for all ? and ?w. These results can be interpreted based on the fact that a particle-depleted layer, which is known to be responsible for slip, is present in the vicinity of the smooth surfaces. The slip layer presents itself as an additional “pseudo-microstructure” (characteristic length scale) besides the two microstructures, aqueous bridges and solid particle agglomerates, that may occur in the system. With serrated plates, both the yield stresses (σ1σ2) and storage moduli plateau at lower strain (before the first yield point) and at higher strain (before the second yield point) (G\(^{\prime }_{p1}\), G\(^{\prime }_{p2}\)) were found to increase with ? (at a fixed ?w =?0.06) following power-law dependences. Similarly with increasing ?w (0.02 – 0.08) at a fixed ? =?0.62, the system behaved as a solid-like material in a jammed state with particles strongly held together as manifested by rapidly increasing σ1 and σ2. The usage of smooth surfaces primarily affected σ1 which was reflected by an approximately 70–90% decrement in the measured σ1 for all values of ?. By contrast, σ2 and G\(^{\prime }_{p2}\) were found to be unaffected as shown by close agreement of values obtained using serrated geometry due to vanishing slip layers at higher strain amplitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号