首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water exchange between bulk water and water-ion complexes will be at equilibrium when the charge density of the complex surface equals the charge density of bulk water, producing a constant radius water-ion complex. This complex will migrate in an electric field at a velocity proportional to the complex radius. CE velocity is the sum of the complex charge-dependent velocity and the buffer electro-osmotic flow. Simultaneous use of both a base (1.07 mM imidazole) and an acid (1.5 mM MOPS) buffer negates EOF at pH 7.4. Electric fields below 300 V/cm (potassium, calcium) and 400 V/cm (magnesium) yield migration velocities with no dehydration of the water-ion complexes. The number of waters per complex increase with the ion charge density: K+ 1.90, Ca++ 5.90, Mg++ 6.59 waters/ion. The charge densities of the complexes are similar: K+ 1.24, Ca++ 1.43, Mg++ 1.21 e/nm2, for an average bulk water charge density of 1.29 ± 0.11 (SD) e/nm2. The addition of 0.1% Triton increases the number of waters for Mg++ to 25.33 and lowers the charge density to 0.497 e/nm2. High electric field dehydration shows that calcium will be fully dehydrated at 638.3 V/cm and magnesium fully dehydrated at 925.5 V/cm, which occur at 6.15 and 5.78 nm from the membrane. Dehydrated magnesium will then bind to calcium channels leading to decreased smooth muscle activation.  相似文献   

2.
Osmometry using an external stressor is a very useful method to measure the equilibrium osmotic pressure for dilute solutions of polyelectrolyte. By taking into account the contribution of the ideal gas law, the excluded volume, the solvency effect, and the Donnan equilibrium effect on the measured pressure it is possible to estimate the effective charge of sodium polyacrylate 35 kgmol−1 as a function of the polymer concentration, the pH, the ionic strength, and the presence of Ca2+ ion. The numerical resolution of state equations has shown that the effective charge increases with the ionic strength or with the decreasing polymer concentration, in agreement with recent theoretical models. On the other hand, the effective charge is pH-independent. This statement remains valid as long as the degree of neutralization of the polyacrylate is over 0.5. Above this degree of neutralization, any further neutralization promoted by NaOH addition leads to the condensation of the Na+ counterion, in agreement with the general concept of ionic condensation. The effective charge represents only 10–20% of the total number of monomer units for pH within 6 and 9 and ionic strength below 0.1 M. The polymer can tolerate the presence of Ca2+ at least up to a molar ratio Ca2+/–COOH = 0.222 without any influence on the effective charge. Received: 11 July 2000/Accepted: 23 October 2000  相似文献   

3.
Simulations using ab initio quantum mechanical charge field molecular dynamics (QMCF MD) and classical molecular dynamics using two‐body and three‐body potentials were performed to investigate the hydration of the Ca2+ ion at different temperatures. Results from the simulations demonstrate significant effects of temperature on solution dynamics and the corresponding composition and structure of hydrated Ca2+. Substantial increase in ligand exchange events was observed in going from 273.15 K to 368.15 K, resulting in a redistribution of coordination numbers to lower values. The effect of temperature is also visible in a red‐shift of the ion‐oxygen stretching frequencies, reflecting weakened ligand binding. Even the moderate increase from ambient to body temperature leads to significant changes in the properties of Ca2+ in aqueous environment. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

4.
Deformation modes were examined on strained thin films of a series of molecular composites containing ionically modified rodlike molecules of poly(p‐phenylene terephthalamide) (PPTA) dispersed in a polar polymer matrix. The rigid molecules were a modified form of PPTA in which the H atom of the amide group was replaced, on 30 mol % of the monomer units, by an ionic propane sulfonate group. The polar polymer matrix of these composites was the flexible‐coil polymer, poly(4‐vinylpyridine). Ionic interactions between the two components increased the effective entanglement strand density and produced changes in the deformation modes. The observed changes were dependent on the relative concentration of the two components and on the nature of the counterion. With K+ as the counterion, the induced deformation mode changed from pure crazing, as in the matrix polymer, to combined crazing and shear deformation at 5 wt % of the ionic polymer and to essentially pure shear deformation as the concentration increased to 15 wt %. However, when Ca2+ was the counterion, pure shear deformation developed at a concentration of only 5 wt %. This effect was attributed to a greater ionic interaction and to a higher effective strand density of the composites, when monovalent K+ was replaced by divalent Ca2+. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 429–436, 2003  相似文献   

5.
Magnesium-25 NMR measurements were carried out on aqueous and non-aqueous solutions of magnesium salts. In the former case the25Mg resonance frequency was independent of the concentration or of the counterion. In nonaqueous solvents, however, the resonance frequency was dependent on the solvent, the concentration, and on the nature of the counterion, indicating some cation-anion interactions. Measurements on Mg2+—phosphonoacetic acid mixtures in aqueous solutions gave strong indications of complexation. Only inconclusive evidence was obtained on the complexation of Mg2+ by macro-bicyclic cryptand C211 in methanol solutions, and no evidence of complexation was obtained with macrocycle 12-crown-4 in dimethylformamide solutions.  相似文献   

6.
The thermodynamic properties of the mixed aqueous electrolyte of ammonium and alkaline earth metal nitrates have been studied using the hygrometric method at 25?°C. The water activities of these {yNH4NO3+(1?y)Y(NO3)2}(aq) systems with Y ≡ Ba2+, Mg2+ and Ca2+ were measured at total molalities ranging from 0.10 mol?kg?1 to saturation for different NH4NO3 ionic-strength fractions of y=0.20, 0.50 and 0.80. These data allow the calculation of osmotic coefficients. From these measurements, the ionic mixing parameters are determined and used to calculate the solute activity coefficients in the mixtures at different ionic-strength fractions. The results of these ternary solution measurements are compared with those for binary solutions of the alkaline earth nitrates of magnesium, calcium and barium with ammonium nitrates. The behavior of the aqueous electrolyte solutions containing mixtures of barium or calcium or magnesium with ammonium nitrates are correlated and show that ionic interactions are more important for the system containing Mg2+ than for Ca2+ or Ba2+. The trends are mainly due to the effects of the ionic size, polarizability and the hydration of the ions in these solutions.  相似文献   

7.
We have studied the effect of sodium ethylenediaminetetraacetate on enzyme-induced degradation of apple pectin. Capillary viscometry and IR spectroscopy data have shown that the ligand binds Ca2+ ions (present in pectin) thus accelerating its biodegradation 1.2–1.6 times at relatively low concentration of the complexone. At the same time, sodium ethylenediaminetetraacetate reduces enzymatic activity of lytic enzymes thus slowing down pectin hydrolysis as higher concentration of the complexone.  相似文献   

8.
Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+?>?Rb+?>?K+?>?Na+?>?Li+ and Ba2+?>?Sr2+?>?Ca2+?>?Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d 001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d 001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36?C84?°C), the dehydration of interlayer water and the chemical-adsorption water (47?C189?°C) and dehydration of bound water of interlayer metal cation (108?C268?°C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.  相似文献   

9.
The hydration of Ca2+ and Mg2+ exchange cations in solution and in 10- and 8-membered silicon—oxygen rings of the clinoptilolite was studied by ab initio and MNDO quantum-chemical methods. The coordination numbers of these cations with respect to water molecules and their hydration energies were determined. It is shown that the localization of Ca2+ and Mg2+ in the clinoptilolite structure was different for the dehydrated state and the partially hydrated state. The ion exchange sorption energy calculated for the Ca2+—Mg-Cli system was in satisfactory agreement with the experimental data.Translated from Teoreticheskaya i Éksperimentalnaya Khimiya, Vol. 40, No. 6, pp. 357–362, November–December, 2004.  相似文献   

10.
The gas-phase chemistry of anionic [M + Cat2+ – 3H]? complexes between Ca2+-specific peptides and the alkaline earth metal ions Mg2+, Ca2+ and Ba2+ is reported. The metal ion complexes were studied using fast atom bombardment, collision-induced decomposition (CID) and molecular mechanical calculations. The CID reactions and molecular mechanical calculations revealed that the Ca2+–peptide complexes are bound differently to the Mg2+– and Ba2+–peptide complexes and that the intrinsic (gas-phase) chemistry is reflected by known aqueousphase chemistry.  相似文献   

11.
The surface electrochemical properties of alumina based ceramic microfiltration membranes were studied by measuring electroosmotic rates and surface charge densities obtained from potentiometric titrations. The rate of electroosmosis, which determines the zeta-potential, was measured on the membrane itself, whereas the surface charge was titrated on a suspension obtained by crushing of the membrane. The zeta-potential was measured in the presence of salts including NaCl, CaCl2 and Na2SO4, for a wide range of pH values (4–9) at ionic strengths of 0.01 and 0.001 M. The pH value of the isoelectric point (iep) show a specific adsorption of SO42− and Ca2+ ions onto the membrane surface. The iep in NaCl solutions occurs at pH 4.7 ± 0.1. The low iep is due to the large amount of silicium oxide in the membrane. The surface charge density is relatively high with respect to the low values of zeta-potentials. The point of zero charge pH(pzc) determined from surface charge and pH profiles occurs at pH 8.2 ± 0.1 in NaCl solution. The pH(pzc) value was also determined by two ‘addition’ methods. Similar pH(pzc) values were obtained. The difference between the pH(pzc) and pH(iep) may be correlated to a loss of acidity that is due to using crushed-membrane powder to perform potentiometric measurements.  相似文献   

12.
Heterophasic substitution of Group I and Group II metal cations for hydrogen ions of titanyl hydrogen phosphate in aqueous solutions has been studied by a potentiometric method. The thermodynamic parameters of the process have been determined. The exchange constants depend on the degree of cation hydration and increase in the following orders: Li+ < Na+ < K+ < Rb+ < Cs+ and Mg2+ < Ca2+ < Sr2+ < Ba2+. Our results make it possible to determine conditions for the efficient deactivation of high-salt liquid radioactive wastes and for the synthesis of stoichiometric compounds of the KTP family.  相似文献   

13.
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.  相似文献   

14.
The behavior of four derivative copolymers of poly(acrylic acid) were modeled in dilute aqueous polymer solutions with calcium counterions. Molecular dynamics simulations of negatively charged copolymer models in the presence of different Ca2+ ion concentrations at 300 K, using an effective molecular dielectric constant of 3.5, were performed. Analyses of the dependence of the total potential energy, the counterion binding energy and the time average chain segment length of each of the copolymer models on Ca2+ ion concentration was performed. One of the copolymer models was predicted to have the greatest propensity to capture the calcium counterions. Unusually strong binding interactions between the copolymer and Ca2+ counterions were identified for this copolymer. Structure-binding analysis led to the identification of a specific Ca2+ binding site sequence and geometry as being responsible for the strong counterion binding. The events that take place during the calcium capturing process at this binding-site are discussed in terms of intramolecular dynamics and intermolecular electrostatic interactions. The existence of this specific Ca2+ binding sequence is a clear example of how property optimization studies in the laboratory mimic breakthrough outcomes realized in natural evolution.  相似文献   

15.
The movement of the bilayer (polypyrrole–dodecylbenzenesulfonate/tape) during artificial muscle bending under flow of current square waves was studied in aqueous solutions of chloride salts. During current flow, polypyrrole redox reactions result in variations in the volumes of the films and macroscopic bending: swelling by reduction with expulsion of cations and shrinking by oxidation with the insertion of cations. The described angles follow a linear function, different in each of the studied salts, of the consumed charge: they are faradaic polymeric muscles. The linearity indicates that cations are the only exchanged ions in the studied potential range. By flow of the same specific charge in every electrolyte, different angles were described by the muscle. The charge and the angle allow the number and volume of both the exchanged cations and the water molecules (related to a reference) between the film to be determined, in addition to the electrolyte per unit of charge during the driving reaction. The attained apparent solvation numbers for the exchanged cations were: 0.8, 0.7, 0.6, 0.5, 0.5, 0.4, 0.25, and 0.0 for Na+, Mg2+, La3+, Li+, Ca2+, K+, Rb+, and Cs+, respectively.  相似文献   

16.
The stability constants of 1: 1 complexes of Mg2+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+ with 29 N-donor ligands (ammonia, alkylamines, aniline, pyridine, imidazole, pyrazole, benzimidazole, isoquinoline, and their alkyl-and halogen-substituted derivatives) in aqueous solutions at 298 K were calculated by integration of the ligand distribution function. The stability constants are determined by the effective charge on the electron donor atom of the ligand and by the sizes of the cation and ligand, as well as by the degree of covalence of the coordination bond.  相似文献   

17.
A new intramolecular charge transfer (ICT) probe 3 is found to display a highly selective photophysical response in the presence of Zn2+, among various biologically significant metal ions examined. The absorption band of 3 is red shifted by 84 nm and the fluorescence intensity increases 13-fold in the presence of Zn2+. The binding interaction follows the order Zn2+ > Cd2+ > Mg2+ > Ba2+ > Ca2+ > K+ ≅ Na+ ≅ Li+ and the stability constant for 3 + Zn2+ is over an order of magnitude higher compared to biologically competing Ca2+ and Mg2+.  相似文献   

18.
在B3LYP/6-311++G**水平上用极化连续介质模型(PCM)系统研究了金属离子(M+/2+=Na+,K+,Ca2+,Mg2+,Zn2+)和十三种鸟嘌呤异构体形成的配合物GnxM+/2+(n为鸟嘌呤异构体的编号,x表示M+/2+与鸟嘌呤异构体的结合位点)在气(g)液(a)两相中的稳定性顺序.着重探讨了液相中配合物的稳定性差异,并且从溶质-溶剂效应、结合能、形变能及异构体的相对能量等几个方面分析了造成稳定顺序发生变化的原因.报道了溶液中这五种金属离子与鸟嘌呤异构体结合形成的六种基态配合物:aG1N2,N3Na+,aG1N2,N3K+,aG1O6,N7Ca2+,aG1N2,N3Mg2+(aG1O6,N7Mg2+),aG2N3,N9Zn2+.可以看出,除了在Zn2+配合物中鸟嘌呤异构体为G2外,构成其余四种金属离子配合物的鸟嘌呤异构体都是G1,但结合位点不同.同时对气相中各类配合物稳定性也进行了系统的排序,并报道了几种较稳定的配合物,如:gG3N1,O6K+,gG5N1,O6K+,gG3N1,O6Ca2+/Mg2+,gG4O6,N7Ca2+/Mg2+.  相似文献   

19.
We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca2+ and Mg2+ in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca2+ and Mg2+ (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca2+ was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca2+ and Mg2+ in mineral water, river water, and seawater samples within only a few minutes using only the naked eye—no need of instruments.  相似文献   

20.
The acid-base properties of unfractionated heparin (H4L) and the complexation of biometal ions (Mg2+ and Ca2+) with heparin in aqueous solutions have been studied by pH titration, using mathematical modeling methods in data processing. The heparin concentration is taken to be equal to the concentration of heparin disaccharide units. The formation constants of the protonated heparin species HiL (i = 1, 2) have been estimated. The most abundant Mg2+-heparin and Ca2+-heparin complex species have been identified, and their formation constants have been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号