首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper describes a multivariate approach to study the effect on chromatographic conditions and to optimize such conditions in capillary liquid chromatography when high injection volumes are required. Several separations have been evaluated by using isocratic and gradient solvent elution, as well as isocratic elution combined with temperature programming. In this study, easily ionisable organic compounds with low logP have been used as representative analytes. Injection volume and nature of the injection solution have been evaluated in order to increase the sensitivity (peak area) and column performance (N values). The equations obtained by multiple linear regressions and response surfaces allow achieving the optimum on-column focusing conditions for chlorophenoxy acids, carbamates and heterocyclic amines.  相似文献   

2.
郝卫强  刘丽娟  沈巧银 《色谱》2021,39(1):10-14
谱带压缩效应是梯度洗脱区别于等度洗脱的重要特征。经典的范德姆特(van Deemter)理论塔板高度方程基于等度洗脱推导得到,因此不能对谱带压缩效应进行描述。在梯度洗脱中,保留因子(k)会随流动相组成(φ)的改变而发生变化,这就使得对梯度洗脱机理的研究要比等度洗脱复杂许多。该文对近10年来谱带压缩效应的研究进展,特别是溶剂强度模型(即描述ln kφ关系的数学表达式)的非线性特征对谱带压缩因子(G)的影响进行了述评,指出为了更好地认识谱带压缩效应需要将这种非线性因素考虑在内。  相似文献   

3.
The prediction of the peak width at half height is an important aspect in the optimization of the chromatographic operating conditions. In this paper, a linear relationship, between the peak widths at half height and the retention values with various isocratic elution is observed. In gradient elution, however, the relationship between the peak widths at half height and the so-called invented retention values that correspond to the mobile phase composition by eluting the solute from the column end is developed. We believe that there is almost the same band width at half height inside the column (in unit of length) for different solutes. The peak width at half height in the chromatogram (in unit of time) is mainly determined by the capacity factor of the solute when it is eluted from the column end. The larger the capacity factor of a solute eluted from the column end, the more slowly will be the solute eluted from the column end and the wider will be the peak width at half height. It is possible to predict the peak width at half height in various isocratic and gradient elutions by using this linear relationship.  相似文献   

4.
A fast ion chromatographic system is described which uses shorter column lengths and compares various eluent profiles in order to maximise the performance without sacrificing the chromatographic resolution. Both isocratic and gradient elution profiles were considered to find the most efficient mode of separation. The separation and determination of seven target anions (chloride, chlorate, nitrate, chromate, sulfate, thiocyanate and perchlorate) was achieved using a short (4 mm ID, 50 mm long) column packed with Dionex AS20 high-capacity anion exchange material. A hydroxide eluent was used at an initial concentration of 25 mM (at a flow-rate of 1.0 mL/min) and two performance maxima were found. The maximum efficiency occurred at a normalised gradient ramp rate of 5 mM/t0, resulting in a peak capacity of 16, while the fastest separation (<3 min) occurred at a normalised ramp rate of 30 mM/t0. The retention time, peak width and resolution using the different eluent profiles on varying column lengths is also compared. Further investigations in this study determined that the highest peak capacity separation under gradient conditions could be approximated using an isocratic separation. The advantage of using this novel approach to approximate the maximum efficiency separation removes the need for column re-equilibration that is required for gradient elution resulting in faster analyses and enhanced sample throughput, with benefits in particular for multidimensional chromatography.  相似文献   

5.
When facing separation problems in ion chromatography, chromatographers often lack guidelines to decide a priori if isocratic elution will give enough separation in a reasonable analysis time or a gradient elution will be required. This situation may be solved by the prediction of retention in gradient elution mode by using isocratic experimental data. This work describes the development of an ion chromatographic gradient elution retention model for fluoride, chloride, nitrite, bromide, nitrate, sulfate and phosphate by using isocratic experimental data. The isocratic elution retention model was developed by applying a polynomial relation between the logarithm of the retention factor and logarithm of the concentration of competing ions; the gradient elution retention model was based on the stepwise numerical integration of the corresponding differential equation. It was shown that the developed gradient elution retention model was not significantly affected by transferring data form isocratic experiment. The root mean squared prediction error for gradient elution retention model was between 0.0863 for fluoride and 0.7027 for bromide proving a very good predictive ability of developed gradient elution retention model.  相似文献   

6.
New retention methodology that integrates the conventional quantitative structure-retention relationship (QSRR) approach and gradient retention modeling based on isocratic retention data is developed and presented in this paper. Such an integrated approach removes the general QSRR limitation of highly predefined application conditions (i.e., QSRR are generally applicable only under the conditions used during model development) and allows the prediction of retentions over a wide range of different elution conditions (practically for any isocratic or gradient elution profile). At the same time, it retains the ability to predict retention of components unknown to the model, i.e., the components that have not been used in modeling. Ion-exchange chromatography (IC) analysis of carbohydrates was selected as modeling environment. Three regression techniques were applied and compared during QSRR modeling, namely: stepwise multiple linear regression, partial least squares (PLS), and uninformative variable elimination–PLS regression. The obtained prediction results of the best QSRR model (root-mean-square error of prediction = 22.69 %) were similar to those found in the literature. The upgrade from QSRR to the integrated model did not diminish the predictive ability of the model, indicating an excellent potential of the developed methodology not only in IC but also in chromatography in general.  相似文献   

7.
This study describes the development of a signal prediction model in gradient elution ion chromatography. The proposed model is based on a retention model and generalized logistic peak shape function which guarantees simplicity of the model and its easy implementation in method development process. Extensive analysis of the model predictive ability has been performed for ion chromatographic determination of bromate, nitrite, bromide, iodide, and perchlorate, using KOH solutions as eluent. The developed model shows good predictive ability (average relative error of gradient predictions 1.94%). The developed model offers short calculation times as well as low experimental effort (only nine isocratic runs are used for modeling).  相似文献   

8.
In this investigation, a method is developed for the isolation and purification of bufadienolides (resibufogenin, cinobufagin, and bufalin) from the Chinese traditional medicine ChanSu. The crude ChanSu extract is prepared with solvent refluxing under optimal conditions. A new chromatographic approach for separating bufadienolides utilizes silica gel column chromatography with isocratic elution using cyclohexane-acetone (5:1) as the mobile phase to separate resibufogenin, followed by reversed-phase C18 preparative HPLC column using isocratic elution of methanol-water (72:28) to separate bufalin and cinobufagin. Combining these two methods, bufalin and cinobufagin could be completely separated in high purity and recovery, and the amounts obtained were 1.9 and 3.1 g, respectively, from 500 g of ChanSu. These two compounds have been identified by mass spectrometry and 1H NMR, and their purities were quantitated by HPLC at 99% and 98%, respectively.  相似文献   

9.
Abstract

Chromatographic resolution of a complex mixture is often a trial and error process. An efficient strategy for the optimization of previously reported isocratic mobile phase conditions utilizes a factorial design and multivariate regression equations to model the dependence of elution time of each component on chromatographic parameters. Several parameters are varied simultaneously, with extreme and central values to allow interpolation in the modeling. Run order is scrambled to minimize time dependent errors. Reported here is the optimization of the separation of monoamine neurotransmitters and metabolites using isocratic reverse phase HPLC chromatography with serial oxidation and reduction electrochemical detection. The predicted retention times closely follow the experimental retention times for a set of conditions not included in the calculation of the model. The results enable the rational adjustment of parameters to meet subsequent chromatographic needs.  相似文献   

10.
The concept of limiting peak purity was applied to quantify the degree of completion of the separation capability of a chromatographic system using multi-linear gradients. The objective was to check whether the complexity of a gradient program deserves be increased to enhance resolution by inserting more linear segments, or on the contrary, no significant improvements can be expected under more complex gradients. A set of 19 isoindole derivatives of primary amino acids was selected to test the performance of isocratic, single linear and multi-linear gradients. Accurate simulated chromatograms were obtained via numerical integration of the general equation of gradient elution, using pre-established start and end conditions of the gradient program. The overall peak purity was selected as objective function. Good--although not baseline--resolution was achieved with an optimal trilinear gradient. Excellent agreement between experimental and predicted optimal chromatograms was found. With the proposed approach, a degree of completion of the separation capability of the chromatographic system of 21.2, 49.7, 81.5 and 88.5% was accomplished with optimal gradients with one, two, three and four segments, respectively. More complex gradients did not enhance the latter figure significantly. Also, multi-linear gradients gave rise to more benefits than complementary gradients.  相似文献   

11.
Several procedures are available for simulating and optimising separations in ion chromatography (IC), based on the application of retention models to an extensive database of analyte retention times on a wide range of columns. These procedures are subject to errors arising from batch-to-batch variability in the synthesis of stationary phases, or when using a column having a different diameter to that used when the database was acquired originally. Approaches are described in which the retention database can be recalibrated to accommodate changes in the stationary phase (ion-exchange selectivity coefficient and ion-exchange capacity) or in the column diameter which lead to changes in phase ratio. The entire database can be recalibrated for all analytes on a particular column by performing three isocratic separations with two analyte ions. The retention data so obtained are then used to derive a "porting" equation which is employed to generate the required simulated separation. Accurate prediction of retention times is demonstrated for both anions and cations on 2mm and 0.4mm diameter columns under elution conditions which consist of up to five sequential isocratic or linear gradient elution steps. The proposed approach gives average errors in retention time prediction of less than 3% and the correlation coefficient was 0.9849 between predicted and observed retention times for 344 data points comprising 33 anionic or cationic analytes, 5 column internal diameters and 8 complex elution profiles.  相似文献   

12.
The chromatographic conditions for the separation of a complex set of flavonoids (aglycones and glycosides) by micellar liquid chromatography with spectrophotometric detection were optimized. A good separation for all analytes was obtained and satisfactory peak shapes were achieved by isocratic elution with Ultrasphere ODS column (250 mm × 4.6 mm, 5 μm). The optimal mobile phase range for flavonoids separation is: SDS concentration between 0.014 and 0.018 mol L?1 and 1-propanol volume fraction between 2.2 and 4.5% (v/v) in a diluted (1:5) phosphate buffer solution pH 6.86. The flavonoids (robinin, rutin, hyperoside, quercitrin, liquroside, luteolin-7O-glucoside, apigenin-7O-glucoside, isosalipurposide, myricetin, fisetin, luteolin, apigenin, quercetin and caempferol) were successfully separated within 40 min with isocratic elution. The developed method is an alternative to reversed-phase LC in the assay of flavonoids in plants, plant extracts and plant extract containing drugs.  相似文献   

13.
Dias NC  Nawas MI  Poole CF 《The Analyst》2003,128(5):427-433
The solvation parameter model is used to identify suitable chromatographic models for estimating the octanol-water partition coefficient for neutral compounds of varied structure by reversed-phase liquid chromatography. The stationary phase Supelcosil LC-ABZ with methanol-water mobile phases affords a series of suitable correlation models for estimating the octanol-water partition coefficient (log KOW) under isocratic and gradient elution conditions. Isocratic separations with mobile phase compositions containing from about 25 to 40% (v/v) methanol provide the most accurate results for log KOW values in the range -0.1 to 4.0. Gradient separations programmed from 5 to 100% (v/v) methanol are suitable for faster separations of compounds with large log KOW values. The standard error in the estimate for the regression models of the predicted log KOW values against literature values are 0.135 log units for the 30% (v/v) methanol-water isocratic system and 0.263 log units for the methanol-water gradient system. Isocratic retention factors predicted from two gradient separations with gradient times of 15 and 45 min afford a poorer fit for the correlation models between log KOW and the estimated retention factors than that of either the above isocratic and gradient models. Plots of the retention factor (log k) as a function of mobile phase composition are generally non-linear. Values of log kw obtained by non-linear extrapolation to a volume fraction of 0% (v/v) methanol do not afford a useful model for estimating log KOW.  相似文献   

14.
Chromatographers are cautioned to avoid gradient elution when isocratic elution will do. In this work, we compared the analytical properties of gradient and isocratic separations of a sample which can be done quite readily under isocratic conditions. We found that gradient elution gave a shorter overall analysis with similar resolution of the critical pair compared to isocratic elution without sacrificing repeatability in retention time, peak area and peak height or linearity of the calibration curve. We also obtained acceptable repeatability in peak area/height and linearity of calibrations curves for a sample that required gradient elution using a practical baseline subtraction technique. Based on these results and related work which show that columns can be reequilibrated by flushing with less than two column volumes of the initial eluent, we conclude that many of the reasons given to avoid gradient elution deserve serious reconsideration, especially for those samples which are easily separated isocratically. However, we believe isocratic elution will remain preferable when: (1) the sample contains less than 10 weakly retained components (i.e. the last peak elutes with k' < 5) or (2) the gradient baseline impedes trace analysis.  相似文献   

15.
Nash MJ  Maskall JE  Hill SJ 《The Analyst》2006,131(6):724-730
Novel HPLC-ICP-MS methodologies are developed using strong anion exchange (Phenomenex SAX-SB) and weak anion exchange (Alltec HAAX) stationary phases in conjunction with a range of aqueous mobile phases to enable simultaneous separations of inorganic Sb(III), Sb(V) and organic trimethylantimony dichloride (TMSb) species in synthetic solutions. Optimum isocratic separations of inorganic Sb(V) and Sb(III) species are achieved using mobile phases comprised of ammonium tartrate under controlled pH conditions, and rapid pH gradient elution profiles are developed to facilitate separations of the Sb(V), Sb(III) and TMSb species in a single chromatographic run. Optimum peak resolution is achieved when using the 100 x 4.6 mm HAAX column at 20 degrees C and 100 mM ammonium tartrate mobile phases with a gradient from pH 3.0 to pH 1.2, although a system peak co-elutes with TMSb under these conditions and precludes quantitative analyses. Interestingly, the elution order of Sb(V), Sb(III) and TMSb species reverses when the temperature of the HAAX stationary phase is increased to 60 degrees C, and concurrent use of a less acidic pH gradient elution profile from pH 2.3 to pH 1.5 is shown to enable successful species separations whilst preventing occurrence of the co-eluting system peak. Limits of detection are achieved in the sub ng mL(-1) range using these novel HPLC-ICP-MS methodologies and provide scope for future environmental analysis applications.  相似文献   

16.
Multi-linear gradient elution was applied for simultaneous optimization of resolution and analysis times for ten phenylthiohydantoin amino acids (PTH-AAs) in liquid chromatography. Relation of lnK upon φ for each analyte was determined using isocratic retention time data, and gradient retention time of analytes was predicted using fundamental equation of gradient elution. Then a grid search program was used to predict retention time of solutes in variable space. Two different chromatographic goals-analysis time and minimum difference between adjacent peaks- were simultaneously evaluated using Pareto optimality method. Gradient program in optimum condition was: initially 24% CH3OH/Water for 10 min, linear ramp to 34% over 5 min, to 29% over 5 min, and to 70% over 20 min. The average of calculated relative error in the prediction of the retention time in optimal conditions was -1.67% that shows a good agreement between predicted and experimental values of the chromatographic retention time in optimal condition.  相似文献   

17.
In this paper, an efficient way for robustness testing of gradient elution liquid chromatographic methods is proposed and tested on model mixtures comprising cilazapril, hydrochlorothiazide, and their degradation products, solutes that differ not only in polarities, but also in solubility and absorption characteristics. In general, the robustness could be tested with respect to various responses: resolution, retention factor, selectivity factor, change of detector response, etc. In chromatographic methods, the separation of the adjacent peaks is mandatory, and, consequently, the resolution is usually used as response. In isocratic elution methods, the resolution threshold depends on many factors, such as sizes of adjacent peaks, peak shapes, and asymmetry factor. At the same time, the situation is even more complex in gradient elution methods, because separation depends on a larger number of parameters, such as gradient profile, column geometry, mobile phase flow rate, column equilibration between gradient runs, etc. To ensure baseline separation, the authors propose application of separation criterion (s) as response and indirect modeling in the robustness evaluation. Examined response in this approach is represented by the difference between the retention time of the beginning of the peak and the retention time of the end of the previously eluting peak of the critical pair. Moreover, the proposed methodology included reusing experiments from the optimization phase to define a robust chromatographic region without increasing the number of experiments. It was shown that method robustness can be easily and efficiently evaluated by this methodology.  相似文献   

18.
A method of flow injection of the lock mass for accurate mass measurement using electrospray ionization time-of-flight mass spectrometry is described. The reference compound is introduced in the chromatographic effluent via a six-port valve placed post-column, prior to the split connector. Flow injection is performed in such a way that the reference elution peak is superimposed in the total ion current and partially overlaps that of the investigated analyte, allowing independent ionization of the two compounds and thus accurate mass measurement with no ion suppression effects. Different lock mass molecules can be injected in a single analytical run to target various analytes. The performance of this methodology is demonstrated in both isocratic and gradient liquid chromatography modes. The molecular ion of the flow-injected lock mass could also be used as a reference for mass measurement of the in-source fragments of the analytes. Good mass accuracy, within 4 mDa of the theoretical values, was obtained.  相似文献   

19.
郝卫强  狄斌  杨永兵  陈强  王俊德 《色谱》2010,28(6):541-546
基于线性溶剂强度模型,应用特征线分析的方法求解梯度洗脱模式下的理想液相色谱模型。在考虑到梯度延迟时间会对溶质的保留时间造成影响的情况下,得到适合于梯度液相色谱中任意等度、线性和阶梯梯度组合条件下的保留时间推导公式。应用这些公式计算任意的梯度条件下的保留时间,并将得到的结果与数值计f算的结果进行比较,二者完全一致,从而验证了推导得到的保留时间公式的正确性。由于这些公式具有形式简单、适用范围广等优点,因此可方便地应用于实际应用中,具有较高的实用价值。  相似文献   

20.
The isocratic and gradient elution behaviour of beta-endorphin and glucagon, two polypeptides known to exist in amphipathic alpha-helical conformations in lipophilic environments, have been examined under reversed-phase high-performance liquid chromatographic (RP-HPLC) conditions with low pH, aquo-acetonitrile mobile phases. The effects of changes in the volume fraction, psi, of the organic solvent modifier and temperature, T, on the magnitudes of the S and log k(o) values of these two polypeptides, obtained from the plots of logarithmic capacity factor (log k') vs. psi using isocratic elution conditions have been determined. These data have then been compared to the corresponding S and log k(o) values, obtained from the plots of logarithmic median capacity factor (log k) versus the median volume fraction of the organic solvent modifier (psi) derived from the linear gradient elution data, using the same n-butyl silica sorbent and related aquo-acetonitrile mobile phase conditions. As apparent from these studies, substantial differences occur in the temperature-dependent trends and magnitudes of the corresponding S and S values, or the log k(o) and log k(o) values, when these parameters are derived from experimental data acquired by these two different elution methods. Moreover, when gradient elution data for beta-endorphin and glucagon are utilised, the extrapolated values of the intercept and slope of the plots of log k vs. 1/T (corresponding to an apparent change in the median enthalpy of association, deltaH(o)assoc, or an apparent change in the median entropy of association, deltaS(o)assoc) substantially deviated from the values obtained for the thermodynamic parameters, deltaH(o)assoc and deltaS(o)assoc, derived from the log k' vs. 1/T plots using the corresponding isocratic data. These findings thus have important implications for biophysical and thermodynamic investigations when gradient elution data are employed to assess the molecular basis of the interaction of polypeptides with non-polar ligates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号