首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rare earth (RE) metal-rich indides RE14Rh3-xIn3 (RE=Y, Dy, Ho, Er, Tm, Lu) can be synthesized from the elements by arc-melting or induction melting in tantalum crucibles. They were investigated by X-ray diffraction on powders and single crystals: Lu14Co3In3 type, space group P42/nmc, Z=4, a=961.7(1), c=2335.5(5) pm, wR2=0.052, 2047 F2 values, 62 variables for Y14Rh3In3, a=956.8(1), c=2322.5(5) pm, wR2=0.068, 1730 F2 values, 63 variables for Dy14Rh2.89(1)In3, a=952.4(1), c=2309.2(5) pm, wR2=0.041, 1706 F2 values, 63 variables for Ho14Rh2.85(1)In3, a=948.6(1), c=2302.8(5) pm, wR2=0.053, 1977 F2 values, 63 variables for Er14Rh2.86(1)In3, a=943.8(1), c=2291.5(5) pm, wR2=0.065, 1936 F2 values, 63 variables for Tm14Rh2.89(1)In3, and a=937.8(1), c=2276.5(5) pm, wR2=0.050, 1637 F2 values, 63 variables for Lu14Rh2.74(1)In3. Except Yb14Rh3In3, the 8g Rh1 sites show small defects. Striking structural motifs are rhodium-centered trigonal prisms formed by the RE atoms with comparatively short Rh-RE distances (271-284 pm in Y14Rh3In3). These prisms are condensed via common corners and edges building two-dimensional polyhedral units. Both crystallographically independent indium sites show distorted icosahedral coordination. The icosahedra around In2 are interpenetrating, leading to In2-In2 pairs (309 pm in Y14Rh3In3).  相似文献   

2.
The new rare earth metal (RE)-nickel-indides Dy5Ni2In4 and RE4Ni11In20 (RE=Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-shaped single crystals were obtained by special annealing sequences. The four indides were investigated by X-ray diffraction on powders and single crystals: Lu5Ni2In4 type, Pbam, Z=2, a=1784.2(8), b=787.7(3), c=359.9(1) pm, wR2=0.0458, 891 F2 values, 36 variables for Dy5Ni2In4, U4Ni11Ga20 type, C2/m, a=2254.0(9), b=433.8(3), c=1658.5(8) pm, β=124.59(2)°, wR2=0.0794, 2154 F2 values, 108 variables for Gd4Ni11In20, a=2249.9(8), b=432.2(1), c=1657.9(5) pm, β=124.59(2)°, wR2=0.0417, 2147 F2 values, 108 variables for Tb4Ni11In20, and a=2252.2(5), b=430.6(1), c=1659.7(5) pm, β=124.58(2)°, wR2=0.0550, 2003 F2 values, 109 variables for Dy4Ni10.80In20.20. The 2d site in the dysprosium compound shows mixed Ni/In occupancy. Most nickel atoms in both series of compounds exhibit trigonal prismatic coordination by indium and rare earth atoms. Additionally, in the RE4Ni11In20 compounds one observes one-dimensional nickel clusters (259 pm Ni1-Ni6 in Dy4Ni10.80In20.20) that are embedded in an indium matrix. While only one short In1-In2 contact at 324 pm is observed in Dy5Ni2In4, the more indium-rich Dy4Ni10.80In20.20 structure exhibits a broader range in In-In interactions (291-364 pm). Together the nickel and indium atoms build up polyanionic networks, a two-dimensional one in Dy5Ni2In4 and a complex three-dimensional network in Dy4Ni10.80In20.20. These features have a clear consequence on the dysprosium coordination, i.e. a variety of short Dy-Dy contacts (338-379 pm) in Dy5Ni2In4, while the dysprosium atoms are well separated (430 pm shortest Dy-Dy distance) within the distorted hexagonal channels of the [Ni10.80In20.20] polyanion of Dy4Ni10.80In20.20. The crystal chemistry of both structure types is comparatively discussed.  相似文献   

3.
The rare earth-nickel-indides RE14Ni3In3 (RE=Sc, Y, Gd-Tm, Lu) were synthesized from the elements by arc-melting and subsequent annealing. The compounds were investigated on the basis of X-ray powder and single crystal data: Lu14Co2In3 type, P42/nmc, Z=4, a=888.1(1), c=2134.7(4), wR2=0.0653, 1381 F2 values, 63 variables for Sc13.89Ni3.66In2.45; a=961.2(1), c=2316.2(5), wR2=0.0633, 1741 F2 values, 64 variables for Y13.84Ni3.19In2.97; a=965.3(1), c=2330.5(5), wR2=0.0620, 1765 F2 values, 63 variables for Gd14Ni3.29In2.71; a=956.8(1), c=2298.4(5), wR2=0.0829, 1707 F2 values, 64 variables for Tb13.82Ni3.36In2.82; a=951.7(1), c=2289.0(5), wR2=0.0838, 1794 F2 values, 64 variables for Dy13.60Ni3.34In3.06; a=948.53(7), c=2270.6(1), wR2=0.1137, 1191 F2 values, 64 variables for Ho13.35Ni3.17In3.48; a=943.5(1), c=2269.1(5), wR2=0.0552, 1646 F2 values, 64 variables for Er13.53Ni3.14In3.33; a=938.42(7), c=2250.8(1), wR2=0.1051, 1611 F2 values, 64 variables for Tm13.47Ni3.28In3.25; a=937.3(1), c=2249.6(5), wR2=0.0692, 1604 F2 values, 64 variables for Tm13.80Ni3.49In2.71; and a=933.4(1), c=2263.0(5), wR2=0.0709, 1603 F2 values, 64 variables for Lu13.94Ni3.07In2.99. The RE14Ni3In3 indides show significant Ni/In mixing on the 4c In1 site. Except the gadolinium compound, the RE14Ni3In3 intermetallics also reveal RE/In mixing on the 4c RE1 site, leading to the refined compositions. Due to the high rare earth metal content, the seven crystallographically independent RE sites have between 9 and 10 nearest RE neighbors. The RE14Ni3In3 structures can be described as a complex intergrowth of rare earth-based polyhedra. Both nickel sites have a distorted trigonal-prismatic rare earth coordination. An interesting feature is the In2-In2 dumb-bell at an In2-In2 distance of 304 pm (for Gd14Ni3.29In2.71). The crystal chemical peculiarities of the RE14Ni3In3 indides are briefly discussed.  相似文献   

4.
EuPd0.72In1.28 and EuPt0.56In1.44 were prepared under multianvil high-pressure (10.5 GPa) high-temperature (1500 and 1400 K) conditions from the precursor compounds EuPdIn and EuPtIn. They were investigated by X-ray diffraction on both powders and single crystals: MgZn2-type, space group P63/mmc, a=578.7(1) pm, c=944.9(3) pm, wR2=0.0734, 263 F2 values for EuPd0.72In1.28 and a=591.1(2) pm, c=933.8(2) pm, wR2=0.0853, 151 F2 values for EuPt0.56In1.44 with 13 variable parameters per refinement. Both structures are built up from face- and corner-sharing tetrahedra of palladium (platinum) and indium atoms. The europium cations are located in cavities within the three-dimensional [Pd0.72In1.28] and [Pt0.56In1.44] networks. The 2a and 6 h positions of the tetrahedral networks show mixed Pd/In and Pt/In occupancy in EuPd0.72In1.28 and EuPt0.56In1.44, respectively. The crystal chemistry of these indides is briefly discussed.  相似文献   

5.
The ternary copper indides RE2CuIn3RECu0.5In1.5 (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn2-type structure, space group P63/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECuxIn2−x. Single crystal structure refinements were performed for five crystals: CeCu0.66In1.34 (a=479.90(7) pm, c=768.12(15) pm), PrCu0.52In1.48 (a=480.23(7) pm, c=759.23(15) pm), NdCu0.53In1.47 (a=477.51(7) pm, c=756.37(15) pm), SmCu0.46In1.54 (a=475.31(7) pm, c=744.77(15) pm), and GdCu0.33In1.67 (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at TN=4.7 K for Pr2CuIn3 and Nd2CuIn3 and 15 K for Sm2CuIn3. Fitting of the susceptibility data of the samarium compound revealed an energy gap ΔE=39.7(7) K between the ground and the first excited levels.  相似文献   

6.
Well crystallized samples of Dy2Pt7In16 and Tb6Pt12In23 were synthesized by an indium flux technique. Arc-melted precursor alloys with the starting compositions ∼DyPt3In6 and ∼TbPtIn4 were annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. Both indides were investigated by X-ray diffraction on powders and single crystals: Cmmm, a=1211.1(2), b=1997.8(3), c=439.50(6) pm, wR2=0.0518, 1138 F2 values, 45 variable parameters for Dy2Pt7In16 and C2/ma=2834.6(4), b=440.05(7), c=1477.1(3) pm, β=112.37(1)°, wR2=0.0753, 2543 F2 values, 126 variable parameters for Tb6Pt12In23. The platinum atoms in the terbium compound have a distorted trigonal prismatic coordination. In Dy2Pt7In16, trigonal and square prismatic coordination occur. The shortest interatomic distances are observed for Pt-In followed by In-In contacts. Considering these strong interactions, both structures can be described by complex three-dimensional [Pt7In16] and [Pt12In23] networks. The networks leave distorted pentagonal channels in Dy2Pt7In16, while pentagonal and hexagonal channels occur in Tb6Pt12In23. The crystal chemistry and chemical bonding of the two indides are briefly discussed.  相似文献   

7.
The rare earth-platinum-indides Nd6Pt13In22, Sm6Pt12.30In22.70, and Gd6Pt12.48In22.52 were synthesized from the elements by arc-melting of the components. Single crystals were grown using special annealing sequences. The three indides were investigated by X-ray powder and single crystal diffraction: Tb6Pt12In23 type, C2/m, Z=2, a=2811.9(6), b=441.60(9), , β=112.10(3)°, wR2=0.0629, 3645 F2 values, 126 variables for Nd6Pt13In22, a=2821.9(6), b=443.06(9), , β=112.39(3)°, wR2=0.0543, 3679 F2 values, 127 variables for Sm6Pt12.30In22.70, and a=2818.5(6), b=439.90(9), , β=112.29(3)°, wR2=0.0778, 3938 F2 values, 127 variables for Gd6Pt12.48In22.52. Most platinum atoms in these structures have a distorted trigonal prismatic coordination by rare earth metal and indium atoms. Together, the platinum and indium atoms build up a complex three-dimensional [Pt12+xIn23−x] polyanionic network in which the rare earth metal atoms fill distorted pentagonal and hexagonal channels. The 2c Wyckoff site in these structures plays a peculiar role. This site is occupied by indium in the prototype Tb6Pt12In23, while platinum atoms fill the 2c site in Nd6Pt13In22, leading to a linear Pt3 chain with Pt-Pt distances of 275 pm. The crystals with samarium and gadolinium as rare earth metal component show mixed Pt/In occupancies.  相似文献   

8.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

9.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   

10.
The ternary antimonide CeIrSb absorbs hydrogen under moderate temperature and pressure conditions (4 MPa and 573 K), leading to the hydride CeIrSbH0.8. The crystal structures of both compounds have been investigated by X-ray diffraction on powders and single crystals: TiNiSi type, space group Pnma, a=735.07(7), b=456.93(4), c=792.8(1) pm, R1/wR2=0.0206/0.0395, 601 F2 values for CeIrSb and a=728.16(14), b=460.35(6), c=825.87(2) pm, R1/wR2=0.0322/0.0735, 528 F2 values for CeIrSbH0.8 with 20 variables per refinement. Hydrogenation induces both an increase of the cell volume V (+4%) and a strongly anisotropic expansion of the unit cell with a maximum of 4.3% in the c direction, leading to a significant increase of the Ce-Ir and Ce-Ce distances in this direction. The H-insertion into CeIrSb leads to a magnetic transition from intermediate valence to antiferromagnetic behavior (TN=7.0 K) evidenced by magnetization, electrical resistivity and specific heat measurements. This transition can be explained on the basis of the Doniach diagram considering the Jcf interaction between the 4f(Ce) and conduction electrons.  相似文献   

11.
The ternary intermetallic compounds RE2Cu2Cd (RE=Y, Sm, Gd-Tm, Lu) were synthesized by induction-melting of the elements in sealed tantalum tubes. The samples were characterized by X-ray powder diffraction. The structure of Gd2Cu2Cd was refined from single crystal X-ray diffractometer data: Mo2FeB2 type, space group P4/mbm, a=756.2(3), c=380.2(3) pm, wR2=0.0455, 321 F2 values, 12 variables. The structures are 1:1 intergrowth variants of slightly distorted CsCl and AlB2 related slabs of compositions RECd and RECu2. The copper and cadmium atoms build up two-dimensional [Cu2Cd] networks (257 pm Cu-Cu and 301 pm Cu-Cd in Gd2Cu2Cd) which are bonded to the rare earth atoms via short RE-Cu contacts (290 pm in Gd2Cu2Cd). Temperature dependent susceptibility measurements of RE2Cu2Cd with RE=Gd, Tb, Dy, and Tm show experimental magnetic moments which are close to the free RE3+ ion values. The four compounds show ferromagnetic ordering at TC=116.7(2), 86.2(3), 48.4(1), and 14.5(1) K, respectively, as confirmed by heat capacity measurements. Dy2Cu2Cd shows a spin reorientation at TN=16.9(1) K.  相似文献   

12.
The germanide Yb2Ru3Ge4 was synthesized from the elements using the Bridgman crystal growth technique. The monoclinic Hf2Ru3Si4 type structure was investigated by X-ray powder and single crystal diffraction: C2/c, Z=8, a=1993.0(3) pm, b=550.69(8) pm, c=1388.0(2) pm, β=128.383(9)°, wR2=0.0569, 2047 F2 values, and 84 variables. Yb2Ru3Ge4 contains two crystallographically independent ytterbium sites with coordination numbers of 18 and 17 for Yb1 and Yb2, respectively. Each ytterbium atom has three ytterbium neighbors at Yb-Yb distances ranging from 345 to 368 pm. The shortest interatomic distances occur for the Ru-Ge contacts. The three crystallographically independent ruthenium sites have between five and six germanium neighbors in distorted trigonal bipyramidal (Ru1Ge5) or octahedral (Ru2Ge6 and Ru3Ge6) coordination at Ru-Ge distances ranging from 245 to 279 pm. The Ru2 atoms form zig-zag chains running parallel to the b-axis at Ru2-Ru2 of 284 pm. The RuGe5 and RuGe6 units are condensed via common edges and faces leading to a complex three-dimensional [Ru3Ge4] network.  相似文献   

13.
The solid state synthesis of Cs4Nb6Fi8.5Ii3.5Ia6 starting from Nb6F15 binary fluoride, as well as its crystal structure determined by X-ray single crystal diffraction, are presented in this work. This novel cluster compound is based on a Nb6Ii3Fi6Li3Ia6 (L=F, I) discrete unit and crystallizes in the monoclinic system (space group C2/m; Z=4 ; a=10.4363(4) Å, b=18.1227(7) Å, c=19.5102(9) Å β=101.223(1)°, V=3619.5(3) Å3, R1=0.057; wR2=0.159). This halide is the first octahedral niobium cluster compound containing unshared terminal Ia ligands together with ordered μ2-Ii and μ2-Fi ligands on nine inner positions whilst the three last ones (Li) are slightly affected by a I/F random occupancy. The structural findings are discussed and compared with those of Nb6F15, Nb6I11, CsNb6I11 and the fluorochlorides and fluorobromides recently reported.  相似文献   

14.
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6−)3([C3]4−)2(C4−)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.  相似文献   

15.
The crystal structures of the new ternary compounds LaCuMg4 and TbCuMg4 were studied by X-ray powder diffraction and single-crystal methods, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS) was used for examining microstructure and phase composition. LaCuMg4 crystallizes in the UCoAl4 structure type (space group P6¯2m, Pearson code hP18, a=1.03911(1), c=0.45126(1) nm, Z=3, RF=0.0654), while TbCuMg4 exhibits a new structure (space group Cmmm, Pearson code oS48, a=1.35797(6), b=2.03333(9), c=0.39149(2) nm, Z=8, wR2=0.0426). Both structures represent a family of two-layer compounds. All interatomic distances indicate metallic type bonding. The structural peculiarities of these compounds and their relations are discussed.  相似文献   

16.
The rare earth-nickel-indides Tm2Ni1.896(4)In, Tm2.22(2)Ni1.81(1)In0.78(2), Tm4.83(3)Ni2In1.17(3), and Er5Ni2In were synthesized from the elements by arc-melting and subsequent annealing for the latter three compounds. Three indides were investigated by X-ray powder and single crystal diffraction: Mo2FeB2 type, P4/mbm, Z=2, a=731.08(4), c=358.80(3) pm, wR2=0.0201, 178 F2 values, 13 variables for Tm2Ni1.896(4)In, a=734.37(7), c=358.6(1) pm, wR2=0.0539, 262 F2 values, 14 variables for Tm2.22(2)Ni1.81(1)In0.78(2), and Mo5SiB2 type, I4/mcm, a=751.0(2), c=1317.1(3) pm, wR2=0.0751, 317 F2 values, 17 variables for Tm4.83(3)Ni2In1.17(3). X-ray powder data for Er5Ni2In revealed a=754.6(2) and c=1323.3(5) pm. The Mo2FeB2 type structures of Tm2Ni1.896(4)In and Tm2.22(2)Ni1.81(1)In0.78(2) are intergrowths of slightly distorted CsCl and AlB2 related slabs, however, with different crystal chemical features. The nickel sites within the AlB2 slabs are not fully occupied in both indides. Additionally In/Tm mixing is possible at the center of the CsCl slab, as is evident from the structure refinement of Tm2.22(2)Ni1.81(1)In0.78(2). The Mo5SiB2 type structures of Tm4.83(3)Ni2In1.17(3) and Er5Ni2In can be considered as an intergrowth of distorted CuAl2 and U3Si2 related slabs in an ABAB′ stacking sequence along the c-axis. Again, one thulium site shows Tm/In mixing. The U3Si2 related slab has great structural similarities with the Mo2FeB2 type structure of Tm2Ni1.896(4)In and Tm2.22(2)Ni1.81(1)In0.78(2). The crystal chemical peculiarities and chemical bonding in these intermetallics are briefly discussed.  相似文献   

17.
Single crystals of the new borides Ni12AlB8, and Ni10.6Ga0.4B6 were synthesized from the elements and characterized by XRD and EDXS measurements. The crystal structures were refined on the basis of single crystal data. Ni12AlB8 (oC252, Cmce, a=10.527(2), b=14.527(2), c=14.554(2) Å, Z=12, 1350 reflections, 127 parameters, R1(F)=0.0284, wR2(F2)=0.0590) represents a new structure type with isolated B atoms and B5 fragments of a B-B zig-zag chain. Because the pseudotetragonal metric crystals are usually twinned. Ni10.6Ga0.4B6 (oP68, Pnma, a=12.305(2), b=2.9488(6), c=16.914(3) Å, Z=4, 1386 reflections, 86 parameters, R1(F)=0.0394, wR2(F2)=0.104) is closely related to binary Ni borides. The structure contains B-B zig-zag chains and isolated B atoms. Ni12GaB8 is isotypical to the Al-compound (a=10.569(4), b=14.527(4) and c=14.557(5) Å).  相似文献   

18.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

19.
Three novel metal polyphosphides, α-SrP3, BaP8, and LaP5, were prepared in BN crucibles by the reaction of the respective stoichiometric mixtures under a high pressure of 3 GPa at 950-1000°C. Their crystal structures were determined from single-crystal X-ray data (α-SrP3: space group C2/m, a=9.199(6) Å, b=7.288(3) Å, c=5.690(3) Å, β=113.45(4)°, Z=4, R1/wR2=0.0684/0.1180 for 471 observed reflections and 22 variables; BaP8: space group P−1, a=6.762(2) Å, b=7.233(2) Å, c=8.567(2) Å, α=86.32(2)°, β=84.31(2)°, γ=70.40(2)°, Z=2, R1/wR2=0.0476/0.1255 for 2702 observed reflections and 82 variables; LaP5: space group P21/m, a=4.885(1) Å, b=9.673(3) Å, c=5.577(2) Å, β=105.32(2)°, Z=2, R1/wR2=0.0391/0.1034 for 1272 observed reflections and 31 variables). α-SrP3 is isostructural with SrAs3 and the crystal structure consists of two-dimensional puckered polyanionic layers 2[P3]2− that stack along the c-axis yielding channels occupied by Sr2+ counterions. BaP8 crystallizes in a new structure type which contains a three-dimensional infinite polyanionic framework 3[P3]2−, with large channels hosting the barium cations. LaP5 is a layered compound containing 2[P5]3− polyanionic layers separated by La3+ ions. All three compounds exhibit expected diamagnetic behaviors.  相似文献   

20.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号