首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Some dielectric oxides have been synthesized and characterized in the BaO-La2O3-TiO2-Nb2O5 system. Through Rietveld refinement of X-ray powder diffraction data, Ba5LaTi2Nb3O18 and Ba4La2Ti3Nb2O18 are identified as the AnBn−1O3n (n=6) type cation-deficient perovskites with space group and lattice constants , and for Ba5LaTi2Nb3O18; , and for Ba4La2Ti3Nb2O18, respectively. Their ceramics exhibit high dielectric constant up to 57 and high quality factors (Qf) up to 21,273 GHz. The temperature coefficient of resonant frequency (τf) of these ceramics is decreased with the increase of B-site bond valence.  相似文献   

2.
Two compounds of formula La7A3W4O30 (with A=Nb and Ta) were prepared by solid-state reaction at 1450 and 1490 °C. They crystallize in the rhombohedric space group R-3 (No. 148), with the hexagonal parameters: , and , . The structure of the materials was analyzed from X-ray, neutron and electronic diffraction. These oxides are isostructural of the reduced molybdenum compound La7Mo7O30, which are formed of perovskite rod along [111]. An order between (Nb, Ta) and W is observed.  相似文献   

3.
A quaternary phase, Ba3La3Mn2W3O18, was synthesized in reduced atmosphere (5% H2/Ar) at 1200 °C and characterized by using powder X-ray diffraction, electron diffraction and high resolution TEM. Ba3La3Mn2W3O18 crystallizes in rhombohedral space group with the cell parameters, and , and can be attributed to the n=6 member in the B-site deficient perovskite family, AnBn−1O3n. The structure can be described as close-packed [La/BaO3] arrays in the sequence of (hcccch)3, wherein the B-site cations, W and Mn, occupy five octahedral layers in every six octahedral layers, which leave a vacant octahedral layers separating the 5-layer perovskite blocks. The B-cation layers in the perovskite block alternate along the c-axis in a sequence of W6+-Mn2+-W5+-Mn2+-W6+. The bond valence calculation and optical reflection spectrum confirm the presence of W5+. This compound behaves paramagnetically in wide temperature range and weak antiferromagnetic interaction only occurs at low temperatures.  相似文献   

4.
A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 °C for 96 h followed by heating at 180 °C for 24 h gave rise to a new inorganic-organic hybrid solid, [C4N2H12][Co4(HPO3)2(C2O4)3], I. The structure consists of edge-shared CoO6 octahedra forming a [Co2O10] dimers that are connected by HPO3 and C2O4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (). Crystal data: I, monoclinic, space group=P21/c (No. 14). a=7.614(15), b=7.514(14), , β=97.351(3)°, , Z=2, , , R1=0.0310 and wR2=0.0807 data [I>2σ(I)].  相似文献   

5.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

6.
Three manganese oxalates have been hydrothermally synthesized, and their structures determined by single-crystal X-ray diffraction. MnC2O4·2H2O (I) is orthorhombic, P212121, , , , , Z=4, final R, Rw=0.0832, 0.1017 for 561 observed data (I>3σ(I)). The one-dimensional structure consists of chains of oxalate-bridged manganese centers. [C4H8(NH2)2][Mn2(C2O4)3] (II) is triclinic, , , , , α=81.489(2)°, β=81.045(2)°, γ=86.076(2)°, , Z=1, final R, Rw=0.0467, 0.0596 for 1773 observed data (I > 3σ (I)). The three-dimensional framework is constructed from seven coordinate manganese and oxalate anions. The material contains extra-framework diprotonated piperazine cations. Mn2(C2O4)(OH)2 (III) is monoclinic, P21/c, , , , β=91.10(3)°, , Z=1, final R1, wR2=0.0710, 0.1378 for 268 observed data (I>2σ (I)). The structure is also three dimensional, with layers of MnO6 octahedra pillared by oxalate anions. The hydroxide group is found bonded to three manganese centers resulting in a four coordinate oxygen.  相似文献   

7.
8.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   

9.
Two alkali metal uranates Rb2U2O7 and Rb8U9O31 have been synthesized by solid state reaction at high temperature and their crystal structures determined from single crystal X-ray diffraction data, collected with a three circles Brucker SMART diffractometer equipped by Mo(Kα) radiation and a charge-coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least-square method on the basis of F2 for all unique reflections, with R1=0.043 for 53 parameters and 746 independent reflections with I?2σ(I) for Rb2U2O7, monoclinic symmetry, space group P21/c, , , , β=108.81(1)°, , , Z=2 and R1=0.036 for 141 parameters and 2065 independent reflections with I?2σ(I) for Rb8U9O31, orthorhombic, space group Pbna, , , , , , Z=4.The Rb2U2O7 structure presents a strong analogy with that of K2U2O7 and can be described by layers of distorted UO2(O4) octahedra built from dimeric units of edge shared octahedra further linked together by opposite corners. In Rb8U9O31 puckered layers are formed by the association of two different uranium polyhedra, pentagonal bipyramids and distorted octahedra. The structure of Rb8U9O31 is built from a regular succession of infinite ribbons similar to those observed in diuranates M2U2O7 (MK, Rb) and infinite three polyhedra wide ribbons , to create an original undulated sheets .For both compounds Rb+ ions occupy the interlayer space and exhibit comparable mobility with conductivity measurements indicating an Arrhenius-type behavior.  相似文献   

10.
The crystal structure of Nb22O54 is reported for the first time, and the structure of orthorhombic Nb12O29 is reexamined, resolving previous ambiguities. Single crystal X-ray and electron diffraction were employed. These compounds were found to crystallize in the space groups P2/m (, , , β=102.029(3)°) and Cmcm (, , ), respectively and share a common structural unit, a 4×3 block of corner sharing NbO6 octahedra. Despite different constraints imposed by symmetry these blocks are very similar in both compounds. Within a block, it is found that the niobium atoms are not located in the centers of the oxygen octahedra, but rather are displaced inward toward the center of the block forming an apparent antiferroelectric state. Bond valence sums and bond lengths do not show the presence of charge ordering, suggesting that all 4d electrons are delocalized in these compounds at the temperature studied, T=200 K.  相似文献   

11.
12.
The new vanadate BiMgVO5 has been prepared and its structure has been determined by single crystal X-ray diffraction: space group P21/n, , , , β=107.38(5)°, wR2=0.0447, R=0.0255. The structure consists of [Mg2O10] and [Bi2O10] dimers sharing their corners with [VO4] tetrahedra. The ranges of bond lengths are 2.129-2.814 Å for Bi-O; 2.035-2.167 Å for Mg-O and 1.684-1.745 Å for V-O. V-O bond lengths determined from Raman band wavenumbers are between 1.679 and 1.747 Å. An emission band overlapping the entire visible region with a maximum around 650 nm is observed.  相似文献   

13.
The hydrothermal reaction of UO3, WO3, and CsIO4 leads to the formation of Cs6[(UO2)4(W5O21)(OH)2(H2O)2] and UO2(IO3)2(H2O). Cs6[(UO2)4(W5O21)(OH)2(H2O)2] is the first example of a hydrothermally synthesized uranyl tungstate. It's structure has been determined by single-crystal X-ray diffraction. Crystallographic data: tetragonal, space group Icm, , , Z=4, MoKα, , R(F)=2.84% for 135 parameters with 2300 reflections with I>2σ(I). The structure is comprised of two-dimensional anionic layers that are separated by Cs+ cations. The coordination polyhedra found in the novel layers consist of UO7 pentagonal bipyramids, WO6 distorted octahedra, and WO5 square pyramids. The UO7 polyhedra are formed from the binding of five equatorial oxygen atoms around a central uranyl, UO22+, unit. Both bridging and terminal oxo ligands are employed in forming the WO5 square pyramidal units, while oxo, hydroxo, and aqua ligands are found in the WO6 distorted octahedra. In the layers, four (UO2)O5 polyhedra corner share with equatorial oxygen atoms to form a U4O24 tetramer entity with a square site in the center; a tungsten atom populates the center of each of these sites to form a U4WO25 pentamer unit. The pentamer units that result are connected in two dimensions by edge-shared dimers of WO6 octahedra to form the two-dimensional [(UO2)4(W5O21)(OH)2(H2O)2]6- layers. The lack of inversion symmetry in Cs6[(UO2)4(W5O21)(OH)2(H2O)2] can be directly contributed to the WO5 square pyramids found in the pentamer units. In the structure, all of these polar polyhedra align their terminal oxygens in the same orientation, along the c axis, thus resulting in a polar compound.  相似文献   

14.
A new heterometallic iodide, PbI4Cu2(PPh3)4, was synthesized by reactions of PbI2, CuI and triphenylphosphine (PPh3) in DMF solution. The single-crystal X-ray diffraction analyses show that Pb(II) center adopts an unusual cis-divacant octahedral geometry. Crystal data: triclinic, space group , , , , α=106.623(4)°, β=103.478(6)°, γ=93.574(5)°, and Z=2. Density function theory (DFT) calculations and fragment orbital interaction analyses reveal the presence of a three-center four-electron (3c-4e) hypervalent bonding about lead; and the formation of the unusual cis-divacant [PbI4]2− octahedron is energetically favorable. The title yellow compound has an optical bandgap of 2.69 eV and shows remarkable red-infrared fluorescence emission at 732 nm with lifetime of 24 μs which is assigned as an iodine 5p-lead 6s to PPh3-lead 6p charge transfer (XM-LM-CT).  相似文献   

15.
A new one-dimensional tellurite phosphate, Ba2TeO(PO4)2 has been synthesized by standard solid-state reaction techniques using BaCO3, TeO2, and (NH4)H2PO4 as reagents. The structure of Ba2TeO(PO4)2 was determined by single-crystal X-ray diffraction. Ba2TeO(PO4)2 crystallizes in the triclinic space group P-1 (No. 2), with , , , α=76.843(4)°, β=79.933(4)°, γ=75.688(4)°, , and Z=2. Ba2TeO(PO4)2 has a novel one-dimensional chain structure that is composed of PO4 tetrahedra and TeO5 polyhedra. Te4+ cations are in asymmetric coordination environments attributable to their lone pairs. The lone pairs on the Te4+ cations point in the [100] and [−100] direction and interact with the Ba2+ cations. Infrared, Raman, and UV-Vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dipole moment calculations are also presented.  相似文献   

16.
The first example of a unidimensional zirconium hydroxide fluoride was synthesized under mild solvothermal treatment and characterized by X-ray diffraction and thermal techniques. Monoprotonated ethylenediamine cations reside between the anionic chains. Crystal data for this material are as follows: [C2N2H9][Zr(OH)2F3], M=243.35, orthorhombic, space group Pca21, a=6.8016(13), b=6.1393(12), , , , Z=4, , μ(Mo-Kα)=1.777 mm−1, . The material transforms to an unknown layered material at ∼175 °C, a common occurrence for 1D structures where the chains are arranged in hydrogen-bonded layers and separated by interlayer organoammoniums. Collapse to the known condensed mineral phase Zr(FO)2.7 occurs at ca. 275 °C before finally transforming to the baddeleyite form of ZrO2 at ca. 460 °C.  相似文献   

17.
A ferroelectric crystal (C3N2H5)5Sb2Br11 has been synthesized. The single crystal X-ray diffraction studies (at 300, 155, 138 and 121 K) show that it is built up of discrete corner-sharing bioctahedra and highly disordered imidazolium cations. The room temperature crystal structure has been determined as monoclinic, space group, P21/n with: , and and β=96.19°. The crystal undergoes three solid-solid phase transitions: ) discontinuous, continuous and discontinuous. The dielectric and pyroelectric measurements allow us to characterize the low temperature phases III and IV as ferroelectric with the Curie point at 145 K and the saturated spontaneous polarization value of the order of along the a-axis (135 K). The ferroelectric phase transition mechanism at 145 K is due to the dynamics of imidazolium cations.  相似文献   

18.
The effect of glass additives on the densification, phase evolution, microstructure and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 (BMT) was investigated. Different weight percentages of quenched glass such as B2O3, SiO2, B2O3-SiO2, ZnO-B2O3, 5ZnO-2B2O3, Al2O3-SiO2, Na2O-2B2O3·10H2O, BaO-B2O3-SiO2, MgO-B2O3-SiO2, PbO-B2O3-SiO2, ZnO-B2O3-SiO2 and 2MgO-Al2O3-5SiO2 were added to calcined BMT precursor. The sintering temperature of the glass-added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition. Addition of glass systems such as B2O3, ZnO-B2O3, 5ZnO-2B2O3 and ZnO-B2O3-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification. The microwave dielectric properties of undoped BMT with a densification of 93.1% of the theoretical density were εr=24.8, and Qu×f=80,000. The BMT doped with 1.0 wt% of B2O3 has Qu×f=124,700, εr=24.2, and . The unloaded Q factor of 0.2 wt% ZnO-B2O3-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B2O3 added ceramic was Qu×f=141,800 GHz. The best microwave quality factor was observed for ZnO-B2O3-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2 wt% ZBS-added BMT dielectric was Qu×f=152,800 GHz, εr=25.5, and .  相似文献   

19.
New ternary bismuth iron niobates having structures based on chemical twinning of pyrochlore are described. Bi5.67Nb10FeO35 has hexagonal symmetry, P63/mmc, , , Z=2 and Bi9.3Nb16.9Fe1.1O57.8 has rhombohedral symmetry, R-3m, , , Z=3. The structures of both phases were determined and refined to R1=0.04 using single-crystal X-ray data. They can be described as being derived from the pyrochlore structure by chemical twinning on (111)py oxygen planes. The chemical twin operation produces pairs of corner-connected hexagonal tungsten bronze (HTB) layers as in the HTB structure, so the structures may alternatively be described as pyrochlore:HTB unit-cell intergrowth structures. In the hexagonal phase the pyrochlore blocks have a width of 12 Å, whereas the rhombohedral phase has pyrochlore blocks of two widths, 6 and 12 Å, alternating with HTB blocks. It is proposed that the previously reported binary 4Bi2O3:9Nb2O5 phase has a related structure containing pyrochlore blocks all of width 6 Å. A feature of the structures is partial occupancy (∼65%) of the Bi sites and displacement of the Bi atoms from the ideal pyrochlore A sites towards the surrounding oxygen atoms, as observed in Bi-containing pyrochlores.  相似文献   

20.
Na3Cu2O4 and Na8Cu5O10 were prepared via the azide/nitrate route from stoichiometric mixtures of the precursors CuO, NaN3 and NaNO3. Single crystals have been grown by subsequent annealing of the as prepared powders at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structures (Na3Cu2O4: P21/n, Z=4, a=5.7046(2), b=11.0591(4), c=8.0261(3) Å, β=108.389(1)°, 2516 independent reflections, R1(all)=0.0813, wR2 (all)=0.1223; Na8Cu5O10: Cm, Z=2, a=8.228(1), b=13.929(2), , β=111.718(2)°, 2949 independent reflections, R1(all)=0.0349, wR2 (all)=0.0850), the main feature of both crystal structures are CuO2 chains built up from planar, edge-sharing CuO4 squares. From the analysis of the Cu-O bond lengths, the valence states of either +2 or +3 can be unambiguously assigned to each copper atom. In Na3Cu2O4 these ions alternate in the chains, in Na8Cu5O10 the periodically repeated part consists of five atoms according to CuII-CuII-CuIII-CuII-CuIII. The magnetic susceptibilities show the dominance of antiferromagnetic interactions. At high temperatures the compounds exhibit Curie-Weiss behaviour (Na3Cu2O4: , , Na8Cu5O10: , , magnetic moments per divalent copper ion). Antiferromagmetic ordering is observed to occur in these compounds below 13 K (Na3Cu2O4) and 24 K (Na8Cu5O10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号