首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The behaviour of the antimetastatic Ru(III) complex imidazolium [trans-RuCl?(1H-imidazole)(DMSO-S)] (NAMI-A) under physiological conditions and its interactions with human serum albumin (hsA) have been studied using electron paramagnetic resonance spectroscopy (EPR). In physiological buffer at pH 7.4, these experiments demonstrate that the DMSO ligand is replaced rapidly by water, and spectra from the subsequent formation of five other Ru(III) complexes show further aquation processes. Although EPR spectra from mono-nuclear Ru(III) complexes are visible after 24 h in buffer, a significant decrease in the overall signal intensity following the first aquation step is consistent with the formation of oxo-bridged Ru(III) oligomers. Incubation with hsA reveals very rapid binding to the protein via hydrophobic interactions. This is followed by coordination through ligand exchange with protein side chains, likely with histidine imidazoles and at least one other specific site. Similar behaviour is observed when the complex is incubated in human serum, indicating that hsA binding dominates speciation in vivo. The addition of ascorbic acid to NAMI-A in buffer leads to quantitative reduction, producing EPR-silent Ru(II) complexes. However, this process is prevented when the complex binds coordinatively to hsA. Together, these results demonstrate the key role that hsA plays in defining the species found in vivo following intravenous treatment with NAMI-A, through prevention of oligomerization and maintenance of the oxidation state, to give protein-bound mono-nuclear Ru(III) species.  相似文献   

2.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

3.
The neutral complex [Ru(2)(acac)(4)(bptz)] (I) has been prepared by the reaction of Ru(acac)(2)(CH(3)CN)(2) with bptz (bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) in acetone. The diruthenium(II,II) complex (I) is green and exhibits an intense metal-ligand charge-transfer band at 700 nm. Complex I is diamagnetic and has been characterized by NMR, optical spectroscopy, IR, and single-crystal X-ray diffraction. Crystal structure data for I are as follows: triclinic, P1, a = 11.709(2) A, b = 13.487(3) A, c = 15.151(3) A, alpha = 65.701(14) degrees, beta = 70.610(14) degrees, gamma = 75.50(2) degrees, V = 2038.8(6) A(3), Z = 2, R = 0.0610, for 4397 reflections with F(o) > 4sigmaF(o). Complex I shows reversible Ru(2)(II,II)-Ru(2)(II,III) and Ru(2)(II,III)-Ru(2)(III,III) couples at 0.17 and 0.97 V, respectively; the 800 mV separation indicates considerable stabilization of the mixed-valence species (K(com) > 10(13)). The diruthenium(II,III) complex, [Ru(2)(acac)(4)(bptz)](PF(6)) (II) is prepared quantitatively by one-electron oxidation of I with cerium(IV) ammonium nitrate in methanol followed by precipitation with NH(4)PF(6). Complex II is blue and shows an intense MLCT band at 575 nm and a weak band at 1220 nm in CHCl(3), which is assigned as the intervalence CT band. The mixed valence complex is paramagnetic, and an isotropic EPR signal at g = 2.17 is observed at 77 and 4 K. The solvent independence and narrowness of the 1200 nm band show that complex II is a Robin and Day class III mixed-valence complex.  相似文献   

4.
(ImH)[trans-RuCl(4)(DMSO-S)(Im)], (Im = imidazole, DMSO-S = S-bonded dimethylsulfoxide), NAMI-A, is the first anticancer ruthenium compound that successfully completed Phase I clinical trials. NAMI-A shows a remarkable activity against lung metastases of solid tumors, but is not effective in the reduction of primary cancer. The structurally similar (ImH)[trans-RuCl(4)(Im)(2)], ICR (or KP418), and its indazole analog (KP1019) are promising candidate drugs in the treatment of colorectal cancers, but have no antimetastatic activity. Despite the pharmacological relevance of these compounds, no rationale has been furnished to explain their markedly different activity. While the nature of the chemical species responsible for their antimetastatic/anticancer activity has not been determined, it has been suggested that the difference between reduction potentials of NAMI-A and ICR may be the key to the different biological responses they induce. In this work, Density Functional Theory calculations were performed to investigate the hydrolysis of NAMI-A and ICR in both Ru(III) and Ru(II) oxidation states, up to the third aquation. In line with experimental findings, our calculations provide a picture of the hydrolysis of NAMI-A and ICR mainly as a stepwise loss of chloride ligands. While dissociation of Im is unlikely under neutral conditions, that of DMSO becomes competitive with the loss of chloride ions as the hydrolysis proceeds. Redox properties of NAMI-A and ICR and of their most relevant hydrolytic intermediates were also studied in order to monitor the effects of biological reductants on the mechanism of action. Our findings may contribute to the identification of the active compounds that interact with biological targets, and to explain the different biological activity of NAMI-A and ICR.  相似文献   

5.
The dinuclear complex [{Ru(CN)(4)}(2)(μ-bppz)](4-) shows a strongly solvent-dependent metal-metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH(2)Cl(2). In CH(2)Cl(2) the separation between the successive Ru(ii)/Ru(iii) redox couples is 350 mV and the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mV and the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH(2)Cl(2) or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH(2)Cl(2) and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCT excited state, which is formulated as Ru(III)(bppz˙(-))Ru(II) and can therefore be considered as a mixed-valence Ru(ii)/Ru(iii) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(ii) and Ru(iii) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙(-) which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(ii)/Ru(ii), Ru(ii)/Ru(iii) and Ru(iii)/Ru(iii) calculations in both water and CH(2)Cl(2) well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)(4)(μ-bppz)](2-) and [{Ru(CN)(4)}(2)(μ-bppz)](4-) very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH(2)Cl(2).  相似文献   

6.
A cyanide-bridged molecular square of [Ru(II) (2)Fe(II) (2)(mu-CN)(4)(bpy)(8)](PF(6))(4).CHCl(3).H(2)O, abbreviated as [Ru(II) (2)Fe(II) (2)](PF(6))(4), has been synthesised and electrochemically generated mixed-valence states have been studied by spectroelectrochemical methods. The complex cation of [Ru(II) (2)Fe(II) (2)](4+) is nearly a square and is composed of alternate Ru(II) and Fe(II) ions bridged by four cyanide ions. The cyclic voltammogram (CV) of [Ru(II) (2)Fe(II) (2)](PF(6))(4) in acetonitrile showed four quasireversible waves at 0.69, 0.94, 1.42 and 1.70 V (vs. SSCE), which correspond to the four one-electron redox processes of [Ru(II) (2)Fe(II) (2)](4+) right arrow over left arrow [Ru(II) (2)Fe(II)Fe(III)] (5+) right arrow over left arrow [Ru(II) (2)Fe(III) (2)](6+) right arrow over left arrow [Ru(II)Ru(III)Fe(III) (2)](7+) right arrow over left arrow [Ru(III) (2)Fe(III) (2)](8+). Electrochemically generated [Ru(II) (2)Fe(II)Fe(III)](5+) and [Ru(II) (2)Fe(III) (2)](6+) showed new absorption bands at 2350 nm (epsilon =5500 M(-1) cm(-1)) and 1560 nm (epsilon =10 500 M(-1) cm(-1)), respectively, which were assigned to the intramolecular IT (intervalence transfer) bands from Fe(II) to Fe(III) and from Ru(II) to Fe(III) ions, respectively. The electronic interaction matrix elements (H(AB)) and the degrees of electronic delocalisation (alpha(2)) were estimated to be 1090 cm(-1) and 0.065 for the [Ru(II) (2)Fe(II)Fe(III) (2)](5+) state and 1990 cm(-1) and 0.065 for the [Ru(II) (2)Fe(III) (2)](6+) states.  相似文献   

7.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

8.
The reaction of mononuclear ruthenium precursor [Ru(II)(acac)(2)(CH(3)CN)(2)] (acac = acetylacetonate) with the thiouracil ligand (2-thiouracil, H(2)L(1) or 6-methyl -2-thiouracil, H(2)L(2)) in the presence of NEt(3) as base in ethanol solvent afforded a trinuclear triangular complex Ru(3)(O,O-acetylacetonate)(3)(mu-O,O,gamma-C-acetylacetonate)(3)(mu(3)-sulfido) (1). In 1, each ruthenium center is linked to one usual O,O-bonded terminal acetylacetonate molecule whereas the other three acetylacetonate units act as bridging functions: each bridges two adjacent ruthenium ions through the terminal O,O-donor centers at one end and via the gamma-carbon center at the other end. Moreover, there is a mu(3)-sulfido bridging in the center of the complex unit, which essentially resulted via the selective cleavage of the carbon-sulfur bond of the thiouracil ligand. In diamagnetic complex 1, the ruthenium ions are in mixed valent Ru(III)Ru(III)Ru(II) state, where the paramagnetic ruthenium(III) ions are antiferromagnetically coupled. The single crystal X-ray structure of 1 showed two crystallographically independent C(3)-symmetric molecules, Ru(3)(O,O-acetylacetonate)(3)(mu-O,O,gamma-C-acetylacetonate)(3)(mu(3)-S) (1), in the asymmetric unit. Bond distances of both crystallographically independent molecules are almost identical, but there are some significant differences in bond angles (up to 6 degrees ) and interplanar angles (up to 8 degrees ). Each ruthenium atom exhibits a distorted octahedral environment formed by four oxygen atoms, two from each of the terminal and bridging acetylacetonate units, one gamma-carbon of an adjacent acetylacetonate ligand, and the sulfur atom in the center of the complex. In agreement with the expected 3-fold symmetry of the complex molecule, the (1)H and (13)C NMR spectra of 1 in CDCl(3) displayed signals corresponding to two types of ligand units. In dichloromethane solvent, 1 exhibited three metal center based successive quasireversible redox processes, Ru(III)Ru(III)Ru(III)-Ru(III)Ru(III)Ru(II) (couple I, 0.43 V vs SCE); Ru(III)Ru(III)Ru(IV)-Ru(III)Ru(III)Ru(III) (couple II, 1.12 V); and Ru(III)Ru(III)Ru(II)-Ru(III)Ru(II)Ru(II) (couple III, -1.21 V). However, in acetonitrile solvent, in addition to the three described couples [(couple I), 0.34 V; (couple II), 1.0 V; (couple III), -1.0], one irreversible oxidative response (Ru(III)Ru(III)Ru(IV) --> Ru(III)Ru(IV)Ru(IV) or oxidation of the coordinated sulfide center) appeared at E(pa), 1.50 V. The large differences in potentials between the successive couples are indicative of strong coupling between the ruthenium ions in the mixed-valent states. Compound 1 exhibited a moderately strong charge-transfer (CT) transition at 654 nm and multiple ligand based intense transitions in the UV region. In the Ru(III)Ru(III)Ru(III) (1(+)) state, the CT band was slightly blue shifted to 644 nm; however, the CT band was further blue shifted to 520 nm on two-electron oxidation to the Ru(III)Ru(III)Ru(IV) (1(2+)) state with a reduction in intensity.  相似文献   

9.
The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2'-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.  相似文献   

10.
Ye HY  Dai FR  Zhang LY  Chen ZN 《Inorganic chemistry》2007,46(15):6129-6135
Reaction of oxo-centered Ru(3)(III,III,III) precursor [Ru(3)O(OAc)(6)(py)(2)(CH(3)OH)](PF(6)) (1) with 1 equiv of 2,2'-azobispyridine (abpy) or 2,2'-azobis(5-chloropyrimidine) (abcp) induced the formation of stable Ru(3)(III,III,II) derivatives [Ru(3)O(OAc)(5){mu-eta(1)(N),eta(2)(N,N)-L}(py)(2)](PF(6)) (L = abpy (2), abcp (3)). As established in the structure of 3 by X-ray crystallography, 2 or 3 is derived from 1 by substitution of the axial methanol and one of the bridging acetates in the parent Ru(3)O(OAc)(6) cluster core with abpy or abcp in an mu-eta(1)(N),eta(2)(N,N) bonding mode. Reduction of 3 by hydrazine induces isolation of one-electron reduced neutral Ru(3)(III,II,II) product Ru(3)O(OAc)(5){mu-eta(1)(N),eta(2)(N,N)-abcp}(py)(2) (3a). As revealed by electrochemical and spectroscopic studies, substituting one of the bridging acetates in the parent Ru(3)O(OAc)(6) cluster core by abcp or abpy modifies dramatically the electronic and redox characteristics in the triruthenium derivatives. Relative to that for the parent compound [Ru(3)O(OAc)(6)(py)(3)](PF(6)) (E(1/2) = -0.46 V), triruthenium-based redox potential in the redox process Ru(3)O(III,III,III)/Ru(3)O(III,III,II) is significantly anodic-shifted to E(1/2) = +0.36 V for 2 and E(1/2) = +0.53 V for 3. Furthermore, the anodic shifts of redox potentials are progressively enhanced with a decrease of the formal oxidation states in the triruthenium cluster cores. As a consequence of remarkable positive shifts for redox potentials, the low-valence Ru(3)(III,III,II) and Ru(3)(III,II,II) species are stabilized and accessible.  相似文献   

11.
Tannai H  Tsuge K  Sasaki Y 《Inorganic chemistry》2005,44(15):5206-5208
A stable Ru(II)/Ru(III) mixed-valence state was observed in acetonitrile for the ruthenium binuclear complex bridged by dimercaptothiadiazolate (DeltaE(1/2) = 220 mV for Ru(2)(II,II)/Ru(2)(II,III) and Ru(2)(II,III)/Ru(2)(III,III) processes; K(com) = 5.3 x 10(3)). Upon protonation of the bridging ligand by the addition of equimolar p-toluenesulfonic acid, however, the mixed-valence state diminished (DeltaE(1/2) = 0 mV). The bridging ligand operates as a proton-induced switch of the electronic communication in the dimeric complex.  相似文献   

12.
A trinuclear [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(II)](6+) complex (I) in which a Fe(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH(3)CN and compared with those of mononuclear model complexes. The cyclic voltammetry of (I) exhibits, in the positive region, two successive reversible oxidation processes, corresponding to the Fe(III)/Fe(II) and Ru(III)/Ru(II) redox couples. These systems are clearly separated (DeltaE(1/2) = 160 mV), demonstrating the lack of an electronic connection between the two subunits. The two oxidized forms of the complex, [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(III)](7+) and [[Ru(III)(bpy)(2)(terpy-bpy)](2)Fe(III)](9+), obtained after two successive exhaustive electrolyses, are stable. (I) is poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine to the Fe(II)-bis-terpyridine subunit leads to a strong quenching of the Ru(II)* excited state by energy transfer to the Fe(II) centre. Luminescence lifetime experiments show that the process occurs within 6 ns. The nature of the energy transfer process is discussed and an intramolecular energy exchange is proposed as a preferable deactivation pathway. Nevertheless this energy transfer can be efficiently quenched by an electron transfer process in the presence of a large excess of the 4-bromophenyl diazonium cation, playing the role of a sacrificial oxidant. Finally complete photoinduced oxidation of (I) has been performed by continuous photolysis experiments in the presence of a large excess of this sacrificial oxidant. The comparison with a mixture of the corresponding mononuclear model complexes has been made.  相似文献   

13.
The tppz-bridged diruthenium(II) complex [(dpk)(Cl)Ru(II)(mu-tppz)Ru(II)(Cl)(dpk)](ClO4)2, [2](ClO4)2, and mononuclear [(dpk)(Cl)Ru(II)(tppz)](ClO4), [1](ClO4) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine, dpk = 2,2'-dipyridylketone], have been synthesized. The 260 mV separation between successive one-electron oxidation couples in [2]2+ translates to a relatively small comproportionation constant, Kc, of 2.5 x 10(4) for the intermediate. It is shown how electrochemical data (E(ox), E(red), Kc) reflect the donor/acceptor effects of ancillary ligands L in a series of systems [(L)ClRu(mu-tppz)RuCl(L)]n, particularly the competition between L and tppz for electron density from the metal. According to EPR (g1 = 2.470, g2 = 2.195, and g3 = 1.873 at 4 K) the intermediate [2]3+ is a mixed-valent Ru(II)Ru(III) species which shows a rather narrow intervalence charge transfer (IVCT) band at 1800 nm (epsilon = 1500 M(-1) cm(-1)). The width at half-height (Deltanu(1/2)) of 700 cm(-1) of the IVCT band is much smaller than the calculated value of 3584 cm(-1), obtained by using the Hush formula Deltanu(1/2) = (2310E(op))(1/2) (E(op) = 5556 cm(-1), energy of the IVCT transition) which would be applicable to localized (Class II) mixed-valent Ru(II)Ru(III) systems. Valence delocalization in [2]3+ is supported by the uniform shift of the nu(C=O) band of the N,N'-coordinated dpk ligands from 1676 cm(-1) in the Ru(II)Ru(II) precursor to 1690 cm(-1) in the Ru(2.5)Ru(2.5) form, illustrating the use of the dpk acceptor to act as reporter ligand via the free but pi-conjugated organic carbonyl group. The apparent contradiction between the moderate value of Kc and the narrow IVCT band is being discussed considering "borderline" or "hybrid" "Class II-III" concepts of mixed-valency, as well as coordination aspects, i.e., the bis-tridentate nature of the pi-acceptor bridging ligand. Altogether, the complex ions [1]+ and [2]2+ display four and five successive reduction processes, respectively, involving both tppz- and dpk-based unoccupied pi orbitals. The one-electron reduced form [2]+ has been assigned as a tppz*- radical-anion-containing species which exhibits a free-radical-type EPR signal at 4K (g(parallel) = 2.002, g(perpendicular) = 1.994) and one moderately intense ligand-based low-energy band at 965 nm (epsilon = 1100 M(-1) cm(-1)).  相似文献   

14.
The Ru(III)(edta)/H(2)O(2) system (edta(4-) = ethylenediaminetretaacetate) was found to degrade the azo-dye Orange II at remarkably high efficiency under ambient conditions. Catalytic degradation of the dye was studied by using rapid-scan spectrophotometry as a function of [H(2)O(2)], [Orange II] and pH. Spectral analyses and kinetic data point towards a catalytic pathway involving the rapid formation of [Ru(III)(edta)(OOH)](2-) followed by the immediate subsequent degradation of Orange II prior to the conversion of [Ru(III)(edta)(OOH)](2-) to [Ru(IV)(edta)(OH)](-) and [Ru(V)(edta)(O)](-)via homolysis and heterolysis of the O-O bond, respectively. The higher oxidation state Ru(IV) and Ru(V) complexes react three orders of magnitude slower with Orange II than the Ru(III)-hydroperoxo complex. In comparison to biological oxygen transfer reactions, the Ru(edta) complexes show the reactivity order Compound 0 ? Compounds I and II.  相似文献   

15.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

16.
Aiming at highly efficient molecular catalysts for water oxidation, a mononuclear ruthenium complex Ru(II)(hqc)(pic)(3) (1; H(2)hqc = 8-hydroxyquinoline-2-carboxylic acid and pic = 4-picoline) containing negatively charged carboxylate and phenolate donor groups has been designed and synthesized. As a comparison, two reference complexes, Ru(II)(pdc)(pic)(3) (2; H(2)pdc = 2,6-pyridine-dicarboxylic acid) and Ru(II)(tpy)(pic)(3) (3; tpy = 2,2':6',2"-terpyridine), have also been prepared. All three complexes are fully characterized by NMR, mass spectrometry (MS), and X-ray crystallography. Complex 1 showed a high efficiency toward catalytic water oxidation either driven by chemical oxidant (Ce(IV) in a pH 1 solution) with a initial turnover number of 0.32 s(-1), which is several orders of magnitude higher than that of related mononuclear ruthenium catalysts reported in the literature, or driven by visible light in a three-component system with [Ru(bpy)(3)](2+) types of photosensitizers. Electrospray ionization MS results revealed that at the Ru(III) state complex 1 undergoes ligand exchange of 4-picoline with water, forming the authentic water oxidation catalyst in situ. Density functional theory (DFT) was employed to explain how anionic ligands (hqc and pdc) facilitate the 4-picoline dissociation compared with a neutral ligand (tpy). Electrochemical measurements show that complex 1 has a much lower E(Ru(III)/Ru(II)) than that of reference complex 2 because of the introduction of a phenolate ligand. DFT was further used to study the influence of anionic ligands upon the redox properties of mononuclear aquaruthenium species, which are postulated to be involved in the catalysis cycle of water oxidation.  相似文献   

17.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

18.
A series of pyridine-based derivatives of the antimetastatic Ru(III) complex imidazolium [trans-RuCl(4)(1H-imidazole)(DMSO-S)] (NAMI-A) have been synthesized along with their sodium-ion compensated analogues. These compounds have been characterized by X-ray crystallography, electron paramagnetic resonance (EPR), NMR, and electrochemistry, with the goal of probing their noncovalent interactions with human serum albumin (hsA). EPR studies show that the choice of imidazolium ligands and compensating ions does not strongly influence the rates of ligand exchange processes in aqueous buffer solutions. By contrast, the rate of formation and persistence of interactions of the complexes with hsA is found to be strongly dependent on the properties of the axial ligands. The stability of noncovalent binding is shown to correlate with the anticipated ability of the various pyridine ligands to interact with the hydrophobic binding domains of hsA. These interactions prevent the oligomerization of the complexes in solution and limit the rate of covalent binding to albumin amino acid side chains. Electrochemical studies demonstrate relatively high reduction potentials for these complexes, leading to the formation of Ru(II) species in aqueous solutions containing biological reducing agents, such as ascorbate. However, EPR measurements indicate that while noncovalent interactions with hsA do not prevent reduction, covalent binding produces persistent mononuclear Ru(III) species under these conditions.  相似文献   

19.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

20.
The elucidation of the WGSR promoted by ruthenium carbonyls in acidic media started with the detection of the Ru(0), Ru(I), and Ru(II) intermediate complexes, namely Ru(3)(CO)(12), Ru(2)[&mgr;-eta(2)-OC(CF(3))O](2)(CO)(6), and fac-[Ru(CF(3)COO)(3)(CO)(3)](-), which accumulate when CF(3)COOH is employed as an acid cocatalyst. Under catalytic conditions, the three were found to interconvert through elementary steps which produce CO(2) and H(2). In fact, Ru(0) is oxidized by H(+) to Ru(I) and half the hydrogen of the catalytic cycle is supplied by this reaction. On the other hand, Ru(I) disproportionates to Ru(0) and Ru(II), and this latter species undergoes nucleophilic attack by H(2)O. The decomposition of the metallacarboxylic acid intermediate gives back Ru(I), while H(2) and CO(2) are produced in a 1/2 molar ratio. The two alternating pathways for dihydrogen formation, namely Ru(0) oxidation by H(+) and the decomposition of a metallacarboxylic acid intermediate, involve H(2) reductive elimination from the same RuHCF(3)COO(CO)(2)L(2) intermediate (L = H(2)O, ethers). These findings define an acid-cocatalyzed WGSR whose distinctive features are (i) the intervention of a disproportionation reaction to generate a Ru(II) electron poor complex, whose CO ligands can undergo nucleophilic attack by water, (ii) the generation of the hydrido intermediate for dihydrogen production through two distinct reaction patways, and (iii) the reductive elimination of H(2) from the hydrido intermediate without involving H(+) from the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号