首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
COT-H在金属Ru表面上沉积的光电子能谱分析   总被引:1,自引:0,他引:1  
采用紫外光电子能谱(UPS),分析了不对称四苯基四苯乙炔基环辛四烯(COT H)有机发光材料与金属之间的界面电子结构,研究了在金属/COT H界面上的逸出功变化.UPS谱中位于费米能级以下5.6、7.9和10.2 eV处的三个谱峰分别来自于COT H材料中苯环的πCC、σCC和σCH轨道.位于3.8 eV处的谱峰反映了八个苯环聚合后具有π轨道特性的C-C键.从UPS谱图中可以看到, COT H材料的最高占有态(HOS:highest occupied state)位于费米能级以下1.8 eV处.COT H材料的逸出功只有3.2 eV,比清洁Ru表面的逸出功小1.0 eV.角分辨紫外光电子能谱(ARUPS)的结果表明,组成COT H分子应该近似平行于衬底表面.  相似文献   

2.
乙烯在Ru(1010)表面价带电子特性研究   总被引:1,自引:0,他引:1  
在200K以下乙烯(C2H4)可以在Ru(1010)表面上以分子状态稳定吸附,200K以上乙烯发生了脱氢分解反应生成乙炔(C2H2).乙烯分解生成乙炔后,σCC和σCH分子轨道能级向高结合能方向分别移动了0.5和1.1 eV.偏振角分辨紫外光电子谱(ARUPS)结果表明:在Ru(1010)表面上,乙烯和脱氢反应后生成的乙炔分子的C-C键轴都不平行于表面,而是沿表面(0001)晶向倾斜.  相似文献   

3.
用同步辐射角分辨偏振紫外光电子谱对K/Ru( 10 10 )面上吸附的CO分子轨道的对称性测量发现 :结合能在 11.2eV的CO - 4a1( 4σ)分子轨道对s偏振光 (在沿〈12 10〉的入射面 )是禁戒的 .结果表明由于K的强烈影响 ,CO的分子轨道重新排列 (sp2 杂化 ) .依据选择定则和分子轨道的对称性说明 ,sp2 再杂化的CO分子吸附的桥位取向是 <12 10 >晶向  相似文献   

4.
用同步辐射角分辨偏振紫外光电子谱对K/Ru(10(1-)0)面上吸附的CO分子轨道的对称性测量发现:结合能在11.2eV的CO-4a1(4σ)分子轨道对s偏振光(在沿<1(2-)10>的入射面)是禁戒的.结果表明由于K的强烈影响,CO的分子轨道重新排列(sp2杂化).依据选择定则和分子轨道的对称性说明,sp2再杂化的CO分子吸附的桥位取向是<1(2-)10>晶向.  相似文献   

5.
在200K以下己烯(C6H12)可以在Ru(101珔0)表面上以分子状态稳定吸附.偏振角分辨紫外光电子谱(ARUPS)结果表明,己烯分子在垂直于衬底表面并沿衬底表面<12珔10>晶向的平面内,己烯分子的轴向沿<12珔10>晶向倾斜.随着衬底温度的提高,到200K以上,己烯分解生成新的碳氢化合物.己烯分解后,πCH分子轨道能级向高结合能方向移动了0.2eV,同时己烯中C的1s能级向低结合能方向移动了0.3eV.  相似文献   

6.
采用密度泛函理论中的广义梯度近似,计算了CO在α-U(001)表面的吸附、解离和扩散.结果表明:CO分子以CU3OU2构型化学吸附在α-U(001)表面,吸附能为1.78-1.99eV;吸附后表层U原子向上迁移,伴随着褶皱的产生;CO分子与表面U原子的相互作用主要是U原子的电子向CO分子最低空轨道2π*转移,以及CO2π*/5σ/1π-U6d轨道间杂化而生成新的化学键;CO解离吸附较分子吸附在能量上更为有利,h1(C)+h2(O)和h1(C)+h1(O)(h:空位)解离态吸附能分别为2.71和3.08eV;近邻三重穴位之间C、O原子的扩散能垒分别为0.57和0.14eV,预示O原子较C原子更易在U(001)表面扩散迁移.  相似文献   

7.
在200 K以下己烯(C6H12)可以在Ru()表面上以分子状态稳定吸附.偏振角分辨紫外光电子谱(ARUPS)结果表明,己烯分子在垂直于衬底表面并沿衬底表面<>晶向的平面内,己烯分子的轴向沿<>晶向倾斜.随着衬底温度的提高,到200 K以上,己烯分解生成新的碳氢化合物.己烯分解后,πCH分子轨道能级向高结合能方向移动了0.2 eV,同时己烯中C的1s能级向低结合能方向移动了 0.3 eV.  相似文献   

8.
本文用EHMO法对Pt(100)面上CO的吸附进行了处理。先计算了Pt-Pt,Pt-H,Pt-C 等二元体系的平衡间距及离解能,与实测值进行比较以确定计算中所用的基轨道及其轨道参数(如电离电位及轨道指数)以及非对角哈密顿矩阵元的近似方式。然后假设了三种吸附模型,分别进行计算。结果能很好地解释CO在Pt表面上的吸附型式以及 C-O键吸附后减弱的情况,并与红外光谱的实验结果一致。由计算得到的吸附能与由热脱附测得的脱附活化能颇相近。从紫外光电子能谱得到CO分子中σ_(2ρ)轨道的能级吸附后产生位移和π_(2ρ)轨道的能峰重迭。计算的结果表明,CO中的σ_(2ρ)轨道吸附后的稳定化程度确较π_(2ρ)轨道大,因而谱线向π_(2ρ)方向移动。又根据“表面分子”的对称性,对CO和Pt之间的轨道相互作用以及CO在Pt上的解离进行了讨论。  相似文献   

9.
Ru/SBA-15催化剂具有高的氢气活化能力,因此被广泛应用在加氢和氢解反应中.一般认为Ru/SBA~-15催化剂的高活性与金属Ru的高分散有关,然而有研究发现在氧化硅载体上还存在溢流的氢,这部分溢流氢也很可能参与加氢和氢解反应.这就产生了两个关键性的问题:(1)Ru/SBA~-15的催化加氢活性中心是什么,是金属Ru还是载体SBA-15;(2)在金属Ru上解离的H是如何迁移到载体上的.因此,加氢活性位点及其形成机理的确认对理解Ru/SBA~-15催化剂的高活性至关重要.原位红外光谱可从分子层面研究在工作状态的催化剂表面活性位点的状态,进而推测可能的反应机理.通过与催化剂Pd/SBA-15,Ru/Al_2O_3和SBA-15比较发现,在氢气氛围中Ru/SBA-15催化剂的原位红外谱图中存在一个独特的位于1996cm~(-1)的峰.由于在Pd/SBA-15,Ru/Al_2O_3和SBA-15上都不存在这个峰,因此该峰的形成是金属Ru和SBA-15相互作用的结果.此外,Si–O键在位于1866 cm~(-1)的合频峰不随氢气氛围变化而变化,因此可排除这个峰属于Si–O键振动的倍频峰.为了排除该峰的产生是由于CO的吸附,我们采用脉冲引入CO的方法,发现在低的CO覆盖率下,红外谱图中位于2068 cm~(-1)处出现了一个CO在Ruδ+上的线性吸附峰.随着CO覆盖率增加,该峰逐渐蓝移至2075 cm~(-1),同时位于2132 cm~(-1)处的峰强度增强了,这两个峰都归属于Run+(CO)x物种的振动峰.这些CO的化学吸附强度都很高,即使在He气中吹扫1 h后仍然存在,而1996 cm~(-1)峰的形成是可逆的.此外,低CO覆盖率下生成的吸附峰(2068 cm~(-1))的强度低于1996 cm~(-1)峰的强度,因此可以排除1996cm~(-1)峰属于CO吸附峰的可能.既然1996 cm~(-1)峰的形成是可逆的,将这个峰归属于载体上氢的可能性也可排除,因为形成载体上氢的过程是不可逆的.另外,形成1996 cm~(-1)峰的速率还证明了这个峰不属于金属Ru上吸附的氢,因为金属Ru上氢的吸附是很快的.通过以上分析,我们推断1996 cm~(-1)峰应该指认为在Ru和SBA-15界面处位点的红外峰.为了证明这一点,我们制备了不同Ru负载量的Ru/SBA-15催化剂,发现这个界面处位点峰的峰面积与金属Ru颗粒在载体上形成交界面的周长成正比,而峰达到稳态所需时间与Ru颗粒大小成反比.这说明H2在金属Ru上发生解离吸附后迁移到Ru和SBA-15界面处,形成了Ru–H–Si物种.当金属Ru的颗粒比较小时,与载体形成交界面的周长小,Ru–H–Si物种的数量少,体现在红外谱图上峰的峰面积小,但解离的氢迁移到该界面所需时间变短了.当金属Ru的颗粒比较大时,与载体形成交界面的周长大,Ru–H–Si物种的数量多,1996 cm~(-1)峰的峰面积大,但解离氢的迁移慢了.此外,H-D交换实验还证明这个界面处的位点具有加氢活性.与文献报道的孤立Si–H物种的红外峰位置比较发现,Ru–H–Si物种具有明显的峰红移现象,说明该物种中的Si–H键活性很高,这可能是由于金属Ru将电子转移至Si–H键的结果.总之,以上结果清晰地表明这个1996 cm~(-1)峰归属为结构是Ru–H–Si的活性位点.  相似文献   

10.
任云鹏  鲁玉祥  娄琦 《物理化学学报》2007,23(11):1728-1732
用密度泛函理论(DFT)中的广义梯度近似(GGA)方法对CO-Pt低指数面吸附体系进行了结构优化, 并对吸附体系的吸附热、C—O键和C—Pt键的键长、布居数分析、电子态密度进行了研究. 计算结果表明, 在0.25 ML(monolayer)的覆盖率下, CO最容易在Pt(100)晶面的桥位、Pt(110)晶面的短桥位、Pt(111)晶面的hcp三重位吸附, 吸附热分别达到了2.11、2.37、1.96 eV; CO在吸附成键过程中伴有电子在CO分子和Pt之间的转移. 吸附后, C—O键被削弱, 键长变长, 金属内部的作用亦被削弱, 其表层Pt 原子的布居数明显降低; 态密度分析表明, CO在吸附过程中, 其4σ、1π、5σ、2π轨道均参与成键.  相似文献   

11.
CO adsorption on Ru(100) and Cs/Ru(10O) surfaces has been investigated using ARUPS, at low temperature 150K. The 5σ+1π and 4σ levels of CO molecule were found in angle-rcsolved UP spectra showing that CO is in molecular adsorption states on clean and Cs precovercd Ru(1010). The dependence of CO 4σ intensity on incident angle suggests that adsorbed CO stands upright on clean Ru(1010) surface; But adsorbed CO, with a short-range interaction with Cs atom [15], does not stand upright and tilts in <1210> azimuth on a Cs-precovered Ru(1010) surface.  相似文献   

12.
用同步辐射角分辨偏振紫外光电子谱对K/Ru(1010)面上吸附分子轨道的对称性测量发现:结合能在11、.2eV的CO-4a1(4σ)分子轨道对s偏振光(在沿〈1210〉的人射面)是禁戒的。结果表明由于K的强烈影响,CO的分子轨道重新排列(sP^2杂化)。依据选择定则和分子轨道的对称性6说明,sp^2再杂化的CO分子吸附的桥位取向是〈1210〉晶向。  相似文献   

13.
利用密度泛函理论(DFT)总能计算研究了Ni(110)-p2mg(2×1)-CO表面的原子结构和电子态. 计算结果表明: CO分子吸附于该表面的短桥位附近, 分子吸附能为1.753 eV, CO分子的键长dC—O为0.117 nm, 分子与表面竖直方向的夹角为20.0°, 碳原子和短桥位中点的连线与竖直方向的夹角为20.9°; 吸附的CO分子内原子间的伸缩振动频率为1876和1803 cm-1. 态密度研究结果表明吸附作用主要来自CO分子π、σ轨道与衬底d轨道间的杂化作用. CO分子σ轨道和衬底表面镍原子dxz轨道杂化形成的表面电子态主要位于费米能以下-10.4 至-8.8 eV和-7.4至-5.1 eV 范围内. σ和dxz轨道间的杂化作用可能是形成p2mg表面对称性的重要因素之一.  相似文献   

14.
Configuration interaction calculations of the ground and excited states of the H2CO molecule adsorbed on the Ag(111) surface have been carried out to study the photoinduced dissociation process leading to polymerization of formaldehyde. The metal-adsorbate system has been described by the embedded cluster and multireference configuration interaction methods. The pi electron-attachment H2CO- and n-pi* internally excited H2CO* states have been considered as possible intermediates. The calculations have shown that H2CO* is only very weakly bound on Ag(111), and thus that the dissociation of adsorbed formaldehyde due to internal excitation is unlikely. By contrast, the H2CO- anion is strongly bound to Ag(111) and gains additional vibrational energy along the C-O stretch coordinate via Franck-Condon excitation from the neutral molecule. Computed energy variations of adsorbed H2CO and H2CO- at different key geometries along the pathway for C-O bond cleavage make evident, however, that complete dissociation is very difficult to attain on the potential energy surface of either of these states. Instead, reneutralization of the vibrationally excited anion by electron transfer back to the substrate is the most promising means of breaking the C-O bond, with subsequent formation of the coadsorbed O and CH2 fragments. Furthermore, it has been demonstrated that the most stable state for both dissociation fragments on Ag(111) is a closed-shell singlet, with binding energies relative to the gas-phase products of approximately 3.2 and approximately 1.3 eV for O and CH2, respectively. Further details of the reaction mechanism for the photoinduced C-O bond cleavage of H2CO on the Ag(111) surface are also given.  相似文献   

15.
CO on Ru[1010] was investigated by broadband femtosecond sum-frequency spectroscopy at 200 K. Approximately half of the frequency shift of 71 cm(-1) over the coverage range from 0.15 to 1.22 monolayers is shown to originate from dipole-dipole coupling, with the remainder due to a chemical shift. Despite low adlayer-surface registration at the highest coverages, the linewidth of the C-O stretch is comparatively low, and is described by homogeneous broadening according to sum-frequency free-induction decay measurements in the time domain. This can be explained by the dominance of the CO dipole coupling strength over the static disorder present in a coincidence structure. As the coverage decreases below 0.3 monolayer, the linewidth increases considerably, indicative of inhomogeneous broadening. Supported by a concomitant frequency change we suggest that at low coverages CO molecules form chains of irregular length in the [0001] direction, as has been shown for other surfaces with similar symmetry.  相似文献   

16.
We have studied structural, electronic and energetical aspects of ordered overlayers which were prepared by depositing Cs and CO on the (2×2)−O-precovered Ru(0001) surface. This ternary system may serve as a model system to study the Cs promoted CO oxidation reaction over Ru(0001). The electronic properties of the Cs subsystem, in particular the delocalized character of the Cs–6 s state, are only little affected by the (2×2)−O overlayer, while the addition of CO leads to a demetallization of the Cs overlayer. The ternary system reveals two metastable configurations (besides a stable one) which are produced at low sample temperatures. In the first one, Cs and CO have changed their adsorption sites if compared to the stable ternary (2×2)−O+Cs+CO phase, i.e. Cs sits in hcp and CO in on-top position. Our studies emphasize the importance of the threefold hollow position of CO to strengthen the back bonding of CO. The surface structure of the second metastable (ternary) arrangement is still elusive.  相似文献   

17.
Electrooxidation of methanol on Ru surfaces was investigated using in situ surface-enhanced Raman spectroscopy. Although the cyclic voltammogram did not show a significant methanol oxidation current on Ru, a Raman band at approximately 1970-1992 cm(-1) was observed from 0.4 to 0.8 V in 0.1 M HClO(4) + 1 M methanol. By comparing with the C-O stretching band (nu(CO)) of carbon monoxide (CO) adsorbed on RuO(2)(110) in the ultrahigh vacuum and on oxidized Ru electrodes, the observed spectral feature is assigned to nu(CO) of adsorbed CO (CO(ads)) on RuO(2). The formation of CO(ads) suggests that methanol oxidation does occur on Ru at room temperature, which is in contrast to the perception that Ru is not active for the reaction. The lack of significant methanol oxidation current is attributed to the competing rapid surface oxidation, which forms inactive surface oxides and therefore inhibits the methanol oxidation.  相似文献   

18.
We present a first-principles study of the nature of the binding of a c(2×2)-CO overlayer on Ag(001) and of the origin of CO-CO interactions upon adsorption. Electronic structural changes induced by molecular adsorption provide an interpretation for earlier X-ray photoemission valence band spectra of CO/Ag(001). Our results establish that CO chemisorbs on clean Ag(001) and follows the Blyholder model of donation and back-donation between CO and metal orbitals. We analyze the origin of the dispersion of the C-O stretch mode and attest that it is caused by the metal-CO coupling. Specifically, the coupling of CO to Ag, although the weakest of those between it and transition and other noble metals, greatly enhances the intermolecular force constants. We also find that the response of the charge density around CO is much stronger and of longer range when the molecule stretches than when it rigidly vibrates against the surface. This difference explains why the C-O stretch mode disperses while the Ag-CO stretch mode does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号