首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of the conductance of porous silicon doped with manganese up to densities corresponding to the metallic side of the Anderson transition is investigated. It is found that in the temperature range below T=40–60 K the conductance decreases with T as G(T)∝T −1/3. This behavior corresponds to one-dimensional electron localization in silicon wires under conditions of inelastic electron-electron collisions with a small energy transfer. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 4, 265–269 (25 February 1998)  相似文献   

2.
Conclusions Our studies have revealed that the spectral density of low-frequency current fluctuations in GaAs tunnel diodes can be described by the relation Wi(u, F)=f2 (u)mF, where the nonlinear function f2(u) is not proportional to the rms of excess diode current. The flicker nature of the current noise in tunnel diodes derives from conductance fluctuations on the p-n junction, which occur in tunnel diodes as well as in low-noise transistors at frequencies ranging from near zero to a few kiloheriz and produce noise of almost the same absolute intensty in both kinds of devices.Leningrad Polytechnic Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 20, No. 5, pp. 777–784, May, 1977.  相似文献   

3.
Temperature dependence of conduction noise and low field magnetoresistance of layered manganite La1.4Ca1.6Mn2O7 (DLCMO) are reported and compared with the infinite layered manganite La0.7Ca0.3MnO3 (LCMO). The double layered manganite was prepared using standard solid state reaction method and had a metal-insulator transition temperature (TM-I) of 155 K. The temperature dependence of susceptibility showed evolution of ferromagnetic ordering at 168 K. The observed voltage noise spectral density (SV) shows 1/fα type of behaviour at all temperatures from 77 K to 300 K. In the ferromagnetic region (T<168 K), SV/V2 shows two peaks at 164 K and 114 K. The observed two peaks in normalised conduction noise of DLCMO is attributed to the excess noise generated due to setting up of short range 2D-ferromagnetic ordering and long range 3D-ferromagnetic ordering at two different temperatures TC2 and TC1. In temperature range between TC1 and TC2, the magnetoresistance (MR) showed a gradual increase with the magnetic field. The observed MR has been explained in the framework of the two phase model [ferromagnetic (FM) domains and paramagnetic (PM) regions].  相似文献   

4.
Slow fluctuations of the electrical resistance R have been systematically observed in three glass-ceramics containing aggregates of magnetite nanoparticles, in measurements where R was studied as a function of time at the magnetic remanence. These fluctuations are shown to be an intrinsic (i.e., not instrumental or spurious) feature of these materials. The associated electrical noise has been obtained by performing a numerical FFT transform of different segments of the R(t) curves after proper baseline subtraction. In this way, the spectral density has been investigated in the very low-frequency region (1×10?3<f<0.2 Hz), usually not covered in standard noise measurements. The spectral density shows a 1/fα behaviour (with α?1.6) in all cases. The results are discussed in terms of the existing models about conductance fluctuations in half-metallic oxides in the hopping regime. It is suggested that electron trapping–detrapping mechanisms (thought to be the source of electrical noise) play a relevant role in the hopping processes between adjacent nanoparticle aggregates of magnetite, which dominate the material's resistivity.  相似文献   

5.
We have studied the temperature dependence of the nuclear transverse and longitudinal relaxation times in solid H2 for ortho concentrations 10-3 < X < 10-2 between 0.4 K and the triple point, 13.9 K. We find a striking temperature dependence in T2 over the whole temperature range. This new effect is ascribed to a coupling between molecular rotation and lattice vibrations, which is brought into evidence by the narrow width of the spectral density of the rotational fluctuations at low X.  相似文献   

6.
The temperature dependence of the magnetic contribution to the specific heat of the anisotropic reentrant ferromagnet Li0.475Co0.05Fe1.575Ga0.9O4 with freezing temperature T f =80 K is investigated. It is found that for both T<T f and T T f right up to T∼150 K the function C m (T) is described by the spin-wave law T 3/2, but an anomaly, exhibiting features which are characteristic for a first-order thermodynamic phase transition, is observed in C m (T 3/2) at T=T f . Pis’ma Zh. éksp. Teor. Fiz. 64, No. 6, 412–415 (25 September 1996)  相似文献   

7.
The complex permittivity ?* of ceramics of bismuth-lanthanum manganite Bi0.5La0.5MnO3 has been measured in ranges of temperatures T = 10–200 K and frequencies f = 102–106 Hz. Clearly pronounced regions of the non-Debye dielectric relaxation have been revealed at low temperatures (T < 90 K). To describe them, the possible mechanisms have been proposed and discussed. The temperature dependences of magnetization, the anomalous behavior of which can be associated with the phase transition from the paramagnetic phase into the ferromagnetic phase occurring at T ~ 40–80 K, have been measured in the temperature range T = 10–120 K.  相似文献   

8.
The generation of 1/f noise is demonstrated experimentally in a system consisting of a superconducting film carrying a transport current in contact with a boiling liquid coolant. It is found that wide-band 1/f noise with a large amplitude of the fluctuations is observed over a wide range of parameters. This noise is attributed to the fact that the sub-systems in contact have the same character of the relaxational dependences δT(t)∼ t −1/2. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 9, 739–742 (10 May 1996)  相似文献   

9.
Complex permittivity ε*/ε0 = ε′/ε0iε″/ε0 of the bismuth–lanthanum manganite Bi0.6La0.4MnO3 ceramics has been measured in the temperature range of 10–220 K at frequencies f = 20–106 Hz and magnetic inductions B = 0–0.846 T. At a temperature of 80 K, the spectra ε′/ε0(t) and ε″/ε0(t) demonstrate the dielectric relaxation that is a superposition of contributions of several relaxation processes, each of which is dominant in its frequency range: I (f < 103 Hz, II (103 < f < 105 Hz), and III (105 < f < 106 Hz). In the range of 10–120 K, anomalous behavior of ε′/ε0(T) and ε″/ε0(T) is observed near the temperature of the transition from the paramagnetic to ferromagnetic phase and is due to the Anderson localization of charge carrier on a spin disorder.  相似文献   

10.
The results of an experimental investigation of a high-power source of broad-band 1/f noise, which can be generated in a system of two interacting nonequilibrium phase transitions, are presented. This process takes place when a normal conductor-superconductor phase transition is superposed on the critical liquid-vapor transition in a boiling coolant. A mathematical model describing a nonequilibrium phase transition in a complicated nonlinear system with two interacting order parameters, which involves the conversion of white noise into stochastic fluctuations of the order parameters with 1/f and 1/f 2 spectra, is proposed. The properties of the model fluctuations with a 1/f spectrum agree qualitatively with the experimentally observed properties. A characteristic difference between the model fluctuations with a 1/f 2 spectrum and random walks is also noted. Zh. éksp. Teor. Fiz. 113, 1748–1757 (May 1998)  相似文献   

11.
Pseudoelasticity caused by pseudotwinning in short-range ordered In-Pb alloys (6, 8 and 11.6 at. % Pb) is studied in the temperature range 0.48–180 K. The mechanical hysteresis parameters, namely, the thermodynamic stress τ T which provides the reversibility of plastic deformation and the frictional stress τ f which characterizes the resistance offered by crystal lattice and its defects to twin boundaries motion are estimated. It is found that athermal processes determine the reversible deformation: the mechanical parameters τ T and τ f do not depend on temperature and strain rate. The stress τ T increases and the stress τ f decreases with increasing Pb content. One of the main conditions of the exhibition of superelasticity is the fulfillment of the inequality τ T f .  相似文献   

12.
Structural phase transitions in the perovskite-like material [(CH4)12(NH3)2]CoCl4 have been observed using differential thermal scanning. The material shows an order-disorder transition at T 1 = 396 ± 5 K with entropy, (ΔS 1) = 12.8 J/mole/K. A "chain melting" transition with a major endothermic peak at T 2 = 337 ± 3 K and a minor one at T ′ = 316 ± 2 K, has total entropy ΔS = 28 J/mole/K. At low temperatures, the transitions at T 3 = 288 ± 3 K and at T 4 = 188 ± 3 K, have entropies of ΔS 3 = 14.4 J/mole/K and ΔS 4 = 2.6 J/mole/K respectively. AC magnetic susceptibility in the temperature range 78-290 K, in a magnetic field of 160 A/m and at a frequency of 320 Hz is presented. The results indicate changes in symmetry at 188 K. Dielectric permittivity has been studied as a function of temperature in the range 300-430 K and frequency range (60 Hz-100 kHz), confirming the observed transitions. The dielectric permittivity reflects rotational and conformational transition for the material. The variation of the real part of the conductivity with temperature is thermally activated with different activation energies in the range of ionic hopping. The temperature dependence of the dc conductivity and that of the ions hopping rate have indicated that the concentration of mobile ions is independent of temperature. The dependence of the conductivity on frequency follows the universal power law, <artwork name="GPHT31040ei1"> in the temperature range 340 K<T<390 K. Values 0 <s 1 <1 dominate at low frequency and correspond to translational hopping motion and values 1<s 2<2 dominate at high frequencies and correspond to well localized hopping and/or reorientational motion. For T > 396 K, the AC conductivity was fitted to <artwork name="GPHT31040ei2"> with 0<s<1. Comparison with the corresponding Cu-containing material is discussed.  相似文献   

13.
We investigate the shape as well as the size- and temperature-dependence of the conductance noise spectrum of a small system containing electrons and both fixed and mobile scatterers. If the number of mobile scatterers within a phase-coherent region is sufficiently large, the temporal variation of the conductance can be viewed as a random walk process limited by the universal conductance fluctuations, resulting in a practically Lorentzian power spectrum. We discuss the conditions under which the noise spectrum of a system consisting of many phase-coherent regions is either Lorentzian or 1/f-like. The temperature-dependence of the power spectrum is determined by the hopping mechanism and the variation of the phase breaking length. As a function of temperature the spectrum satisfies power law scaling relations with exponents depending on the dimension and the temperature range; the spectral intensity can both increase and decrease with decreasing temperature.  相似文献   

14.
The polycrystalline samples La0.67Ca0.33Mn(1?x)Fe x O3 (x?=?0.00,?0.01,?0.03, and 0.1) have been grown in single phase by solid state route. The analysis of the reaction has been done by thermogravimetry and differential thermal analysis measurements. DC electrical resistivity measurements have been carried out down to 15?K. The samples with x?=?0.00, 0.01, and 0.03 exhibit metal–insulator (MI) transition at temperatures 221.5?K, 217?K, and 215?K respectively, whereas the sample with x?=?0.1 is insulating in nature for entire temperature range. Interestingly, the electric transport properties of these samples are not consistent with their magnetic phase transitions and the samples show MI transition at a temperature, T MI, which is significantly lower than the paramagnetic to ferromagnetic transition temperature (T c). The resistivity data below T MI has been analyzed using the empirical relation ρ?=?ρ0?+?ρ1 T n and the data above this temperature has been analyzed using two existing models, Mott's variable range hopping model and spin polaronic conduction model.  相似文献   

15.
The temperature dependences of the electrical conductivity and the permittivity of TlInSe2 and TlGaTe2 crystals unirradiated and irradiated with 4-MeV electrons at a doze of 1016 cm−2 have been investigated. It has been established that electron irradiation leads to a decrease in the electrical conductivity σ and the permittivity ɛ over the entire temperature range under study (90–320 K). It has been revealed that the TlInSe2 and TlGaTe2 single crystals undergo a sequence of phase transitions characteristic of crystals of this type, which manifest themselves as anomalies in the temperature dependences σ = f(T) and ɛ = f(T). Electron irradiation at a doze of 1016 cm−2 does not affect the phase transition temperatures of the crystals under investigation.  相似文献   

16.
Single-crystal diamonds with characteristic sizes of 2–7 mm doped with boron in the concentration range 1019–1020 cm?3 have been grown by the temperature gradient method at high static pressures. The temperature dependence of the resistance R of the synthesized single crystals has been measured in the range 0.5 K < T < 297 K. An activated dependence R(T) with an activation energy of about 50 meV is observed in the range from room temperature to T ≈ 200 K. At temperatures below approximately 50 K, the temperature dependence of the conductivity for heavily doped crystals is proportional to T 1/2, which is characteristic of degenerate semiconductors with a high number of defects.  相似文献   

17.
Manoranjan Kar  S Ravi 《Pramana》2002,58(5-6):1009-1012
Electron-doped (Ba1−x La x )MnO3 compounds were prepared for x=0−0.5. Measurements of X-ray diffraction (XRD) at room temperature and temperature variation of dc electrical resistivity down to 20 K were carried out. Samples with x=0.2–0.5 exhibit metal-insulator (M-I) transition. The maximum M-I transition temperature (T c) of 289 K was observed for 30% of La doping (x=0.3). XRD patterns of these samples (x=0.2−0.5) were analyzed using Rietveld refinement. These samples are found to be mostly in single-phase form with orthorhombic symmetry (space group Pbnm). We have found strong correlation between Mn-O-Mn bond angles and T c of M-I transition. The resistivity data below T c could be fitted to the expression ρ=ρ 1+ρ 2 T 2 and this shows that double exchange interaction plays a major role even in Mn4+-rich compound. Above T c the resistivity data were fitted to variable range hopping and small polaron models.  相似文献   

18.
We report investigations of conductance fluctuations (with 1/f(alpha) power spectra) in doped silicon at low temperatures (T<20 K) as it is tuned through the metal-insulator transition (MIT) by changing the carrier concentration n. The scaled magnitude of noise, gamma(H), increases with decreasing T following an approximate power law gamma(H) approximately T-beta. At low T, gamma(H) diverges as n decreases through the critical concentration n(c), accompanied by a growth of low-frequency spectral weight. The second spectrum and probability density of the fluctuations show strong non-Gaussian behavior below 20 K as n/n(c) decreases through 1. This is interpreted as the onset of a glassy freezing of the electronic system across the MIT.  相似文献   

19.
Low temperature polarized Raman scattering measurements of KDP:Mn (0.9% weight of Mn) were performed at temperatures ranging from 14 to 300 K, over the spectral range 50–1250 cm−1. In the present results we can see that the spectra of undoped and doped samples at room temperature are very different. Doped samples maintain the KDP structure as tetragonal, with the same factor group D2d but with a different class of the space group, different from the original 12. The results show that the crystal undergoes a phase transition at temperature between 115 and 97 K, which is much lower than the phase transition temperature of undoped KDP that occurs at 122 K, where the crystal changes from the para‐electric to the ferroelectric phase. Further, at very low temperature (14 K) we can see that the spectra of KDP:Mn (0.9% weight of Mn) present a behavior very different from the behavior presented by the spectra of KDP doped with low Mn concentration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Using an original modulation technique, the electron spin-lattice relaxation have been investigated in two noncommon metals: YBa2Cu3Ox, high-Tc material doped with 1% Gd, and Rb1C60, linear polymer phase fulleride. In the first case, the Korringa-like temperature dependence of the Gd3+ longitudinal relaxation time T1, is found forx = 6.59 in a wide temperature range 4.2 <T < 200 K, both above and below Tc = 56 K. Atx = 6.95 (Tc = 90 K), the T1 behavior within 50 <T < 200 K is evidently affected by spin gap opening with the gap value of about 240 K. At 200 K, an unexpected acceleration of the relaxation rate takes place, suggesting some change in the relaxation mechanism. The data are discussed in terms of the Barnes-Plefke theory with allowance made for microscopic separation of the normal and superconducting phases. In Rb1C60, the evolution of the ESR line and relaxation rates have been studied accurately in the range of the metal-insulator transition (below 50 K). Interpretation is suggested which takes into account breaking down the relaxation bottleneck due to opening of the energy gap near the Fermi surface. The gap value of about 100 cm?1 is estimated from the analysis of relaxation rates, lineshape and spin susceptibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号