首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this report, we describe the visible-laser desorption/ionization of biomolecules deposited on gold-coated porous silicon and gold nanorod arrays. The porous silicon made by electrochemical etching was coated with gold using argon ion sputtering. The gold nanorod arrays were fabricated by electrodepositing gold onto a porous alumina template, and the subsequent partial removal of the alumina template. A frequency-doubled/tripled Nd : YAG laser was used to irradiate the gold nanostructured substrate, and the desorbed molecular ions were mass-analyzed by a time-of-flight mass spectrometer. The desorption/ionization of biomolecules for both substrates was favored by the use of the 532-nm visible-laser, which is in the range of the localized surface plasmon resonance of the gold nanostructure. The present technique offers a potential analytical method for low-molecular-weight analytes that are rather difficult to handle in the conventional matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.  相似文献   

2.
In this report, the use of a simple and versatile technique of templated electrodeposition through colloidal templates to produce nanostructured films of Pt and Au with regular submicron spherical holes arranged in a hexagonal close-packed structure is described. The templates were produced by self assembly of a monodispersed suspension of polystyrene spheres on gold substrates using capillary forces. The self assembly process was modified through the chemical modification of the gold substrate with cysteamine thiol. Films of Pt and Au were prepared by electrochemical deposition through the template. The electrochemical deposition charge and the current time curve were used to control the film height with a precision of approximately 10 nm. The colour of the nanostructured films changed as the film thickness was changed. On the other hand, high surface area of the nanostructured Pt film on top of the gold substrate was calculated using electrochemical cyclic voltammogram. About 55 roughness factor was obtained. SAXS measurements showed strong scattering at low angles indicating the presence of a well-ordered mesostructure.  相似文献   

3.
Summary: The use of electrostatically addressable templates for the directed assembly of conducting polymers and pattern transfer to another polymer substrate is demonstrated. Doped conducting polyaniline was selectively assembled on the patterned template assisted by a DC electric field. Adding an insulated silicon dioxide layer onto the surface of the silicon wafer is critical to the formation of patterned PANi rather than a PANi film. After deposition, it was demonstrated that by compression molding or solution casting methods, patterned PANi can be completely transferred to a secondary polymer substrate, such as an NBR sheet or a polyurethane film. The conductivity of PANi lines on the PU film was found to be as high as 0.87 S · cm−1. The simple one‐step assembly process for patterning conductive polymers and transfer provides a promising nanomanufacturing approach for cost‐effective and high performance flexible nanoelectronics and biosensors.

Optical image of PANi‐assembled templates with patterned gold lines connected to negative electrodes at 10 V for 1 min.  相似文献   


4.
Electrostatic-assembly metallized nanoparticles network by DNA template   总被引:1,自引:0,他引:1  
Wu A  Cheng W  Li Z  Jiang J  Wang E 《Talanta》2006,68(3):693-699
Eighteen-nanometer gold and 3.5-nm silver colloidal particles closely packed by cetyltrimethylammonium bromide (CTAB) to form its positively charged shell. The DNA network was formed on a mica substrate firstly. Later, CTAB-capped gold or silver colloidal solutions were cast onto DNA network surface. It was found that the gold or silver nanoparticles metallized networks were formed owing to the electrostatic-driven template assembling of positive charge of CTAB-capped gold and silver particles on the negatively charged phosphate groups of DNA molecules by the characterizations of AFM, XPS and UV-vis. This method may provide a novel and simple way to studying nanoparticles assembly conjugating DNA molecules and offer some potential promising applications in nanocatalysis, nanoelectronics, and nanosensor on the basis of the fabricated metal nanoparticles network.  相似文献   

5.
J S Buch  P C Wang  D L DeVoe  C S Lee 《Electrophoresis》2001,22(18):3902-3907
The application of the field-effect for direct control of electroosmosis in a polydimethylsiloxane (PDMS)-based microfluidic system, constructed on a silicon wafer with a 2.0 microm electrically insulating layer of silicon dioxide, is demonstrated. This microfluidic system consists of a 2.0 cm open microchannel fabricated on a PDMS slab, which can reversibly adhere to the silicon wafer to form a hybrid microfluidic device. Aside from mechanically serving as a robust bottom substrate to seal the channel and support the microfluidic system, the silicon wafer is exploited to achieve field-effect flow control by grounding the semiconductive silicon medium. When an electric field is applied through the channel, a radial electric potential gradient is created across the silicon dioxide layer that allows for direct control of the zeta potential and the resulting electroosmotic flow (EOF). By configuring this microfluidic system with two power supplies at both ends of the microchannel, the applied electric potentials can be varied for manipulating the polarity and the magnitude of the radial electric potential gradient across the silicon dioxide layer. At the same time, the longitudinal potential gradient through the microchannel, which is used to induce EOF, is held constant. The results of EOF control in this hybrid microfluidic system are presented for phosphate buffer at pH 3 and pH 5. It is also demonstrated that EOF control can be performed at higher solution pH of 6 and 7.4 by modifying the silicon wafer surface with cetyltrimethylammonium bromide (CTAB) prior to assembly of the hybrid microfluidic system. Results of EOF control from this study are compared with those reported in the literature involving the use of other microfluidic devices under comparable solution conditions.  相似文献   

6.
Biomolecule template gives new opportunities for the fabrication of novel materials with special features. Here we report a route to the formation of DNA–polyaniline (PAn) complex, using immobilized DNA as a template. A gold electrode was first modified with monolayer of 2-aminoethanethiol by self-assembly. Thereafter, by simply immersing the gold electrode into DNA solution, DNA molecules can be attached onto the gold surface, followed by the DNA-templated assembly and electropolymerization of protonated aniline. The electrostatic interactions between DNA and aniline can keep the aniline monomers aligning along the DNA strands. Investigations by surface plasmon resonance (SPR), electrochemistry and reflection–absorption UV/Vis–Near IR spectroscopy substantially convince that PAn can be electrochemically grown around DNA template on gold surface. This work may be provides fundamental aspects for building PAn nanowires with DNA as template on solid surface if DNA molecules can be individually separated and stretched.  相似文献   

7.
A self-assembled-monolayer-modified silicon substrate was successfully used to enhance the sensitivity of peptide detection for atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI/MS). The effect of surface modification of silicon wafer samples with NH(2) and OH functional groups was investigated. In addition, solvent effects for the preparation of modified NH(2)-functionalized surfaces were examined. The sensitivities for the two peptides were significantly improved, increasing between 12 and 160 times, for bradykinin and gramicidin, respectively, on an NH(2)-modified silicon surface prepared in toluene, over that on a conventional gold substrate. The limits of detection (LODs) for bradykinin and gramicidin using the conventional gold substrate in AP-MALDI/MS experiments were > 0.011 microM and 110 microM, respectively. Using our SAM approach, the LODs for bradykinin and gramicidin in AP-MALDI/MS can be improved to 0.93 nM and 0.33 microM, respectively. This SAM approach for AP-MALDI/MS is simple and sensitive, and can be used for high-throughput analysis.  相似文献   

8.
Self-assembled monolayers(SAMs) of thiol-derivatized porphyrin molecules on Au substrate have attracted extensively interest for use in sensing,optoelectronic devices and molecular electronics.In this paper,tetra-[p-(3-mercaptopropyloxy)-phenyl]porphyrin was synthesized and self-assembled with thiol on Au substrate for porphyrin SAMs(PPS 4).The electrochemical results demonstrated that PPS 4 could form excellent SAMs on gold surface.Self-assembled nanojunctions of PPS 4 were fabricated by using gold nanogap electrodes(gap width:ca.100 nm).With the light on/off,the nanojunctions showed current high/low as nanometer scaled photo switch.  相似文献   

9.
Electrostatic assembly of cationic nanoparticles onto the negatively charged backbone of double-stranded DNA has been shown to produce one-dimensional chains with potential use as nanoelectronic components. In this paper, micron long DNA templates stretched on aminosilane- and hexamethyldisilazane-modified silicon surfaces are used to assemble 3.5 nm gold nanoparticles passivated with cationic thiocholine. Atomic force microscopy is used to analyze the density and defects along the approximately 5 nm high structures, with comparison between positively charged and neutral surfaces. Low background adsorption of nanoparticles is facilitated by both these surface chemistries, while the neutral surface yields a more densely packed assembly.  相似文献   

10.
We present a new type of azide-functionalized gold nanoparticle and their coupling to an alkyne-modified DNA duplex using the copper(I)-catalyzed Huisgen cycloaddition ('click chemistry'), resulting in a chain-like assembly of nanoparticles on the DNA template.  相似文献   

11.
We have demonstrated the essential nanogap effects on surface-enhanced Raman scattering (SERS) signals obtained from two diagonally aligned gold nanoparticles with several nanometre separations, which were precisely fabricated on a glass substrate. This is the first proof of principle for extracting the light localization effects on SERS due to the formation of nanogaps from experimentally observed SERS signals.  相似文献   

12.
Dielectrophoresis is an effective method for capturing nanoparticles and assembling them into nanostructures. The frequency of the dielectrophoretic alternating current (ac) electric field greatly influences the morphology of resultant nanoparticle assemblies. In this study, frequency regimes associated with specific gold nanoparticle assembly morphologies were identified. Gold nanoparticles suspended in water were captured by microelectrodes at different electric field frequencies onto thin silicon nitride membranes. The resultant assemblies were examined by transmission electron microscopy. For this system, the major frequency-dependent influence on morphology appears to arise not from the Clausius-Mossotti factor of the dielectrophoretic force itself, but instead from ac electroosmotic fluid flow and the influence of the electrical double layer at the electrode-solution interface. Frequency regimes of technological interest include those forming one-dimensional nanoparticle chains, microwires, combinations of microwires and nanoparticle chains suitable for nanogap electrode formation, and dense three-dimensional assemblies with very high surface area.  相似文献   

13.
本文以高能量的超声波作用于溶胶/疏水溶剂两相体系, 使溶胶相中的纳米颗粒先被加速吸附到乳液油滴的小表面. 随着乳液油滴向上转移, 在界面处破乳, 纳米颗粒就被释放到水/油界面上来, 形成自组装纳米薄膜. 尽管这种组装机制尚不完全清楚(如超声波是否确实如预期那样可以提高纳米粒子的动能), 但这种方法不需要预先对纳米粒子表面疏水修饰, 也不需向体系中添加表面活性有机小分子或电解质等诱导剂, 可快速有效制备表面“洁净”的纳米粒子薄膜, 并可用作高活性SERS基底.  相似文献   

14.
A highly reproducible and facile method for formation of ordered 2 dimensional arrays of CTAB protected 50 nm gold nanoparticles bonded to silicon wafers is described. The silicon wafers have been chemically modified with long-chain silanes terminated with thiol that penetrate the CTAB bilayer and chemically bind to the underlying gold nanoparticle. The silicon wafer provides a reproducibly smooth, chemically functionalizable and non-fluorescent substrate with a silicon phonon mode which may provide a convenient internal frequency and intensity calibration for vibrational spectroscopy. The CTAB bilayer provides a potentially biomimetic environment for analyte, yet allows a sufficiently small nanoparticle separation to achieve a significant electric field enhancement. The arrays have been characterized using SEM and Raman spectroscopy. These studies reveal that the reproducibility of the arrays is excellent both between batches (<10% RSD) and across a single batch (<5% RSD). The arrays also exhibit good stability, and the effect of temperature on the arrays was also investigated. The interaction of protein and amino acid with the nanoparticle arrays was investigated using Raman microscopy to investigate their potential in bio-SERS spectroscopy. Raman of phenylalanine and the protein bovine pancreatic trypsin inhibitor, BPTI were studied using 785 nm excitation, coincident with the surface plasmon absorbance of the array. The arrays exhibit SERS enhancements of the order of 2.6 x 10(4) for phenylalanine, the standard deviation on the relative intensity of the 1555 cm(-1) mode of phenylalanine is less than 10% for 100 randomly distributed locations across a single substrate and less than 20% between different substrates. Significantly, comparisons of the Raman spectra of the protein and phenylalanine in solution and immobilized on the nanoparticle arrays indicates that the protein is non-randomly orientated on the arrays. Selective SERS enhancements suggest that aromatic residues penetrate through the bilayer inducing conformational changes in the protein.  相似文献   

15.
A method to develop DNA fibrils with a length more than a few tens of micrometers, oriented in one direction on the n- and p-type silicon surface is described. A new simple and effective technique is proposed to produce silver nanowires by electrochemical reduction of silver ions bound to DNA using the obtained fibrils as a template, as a result of which DNA molecules fixed on the surface of the n-type silicon single crystal are uniformly covered by silver clusters with a size of about 30 nm. The proposed metallization procedure of DNA on the n-type silicon surface has an advantage in comparison with a similar one for macromolecules fixed on freshly cleaved mica, glass surface, and p-type silicon. n-Type silicon is not only a substrate, but also a source of electrons for silver reduction. The absence of an additional chemical component (reducer) principally distinguishes the proposed method from the others currently known. Atomic force microscopic images of fixed DNA molecules and prepared nanowires are obtained.  相似文献   

16.
For the electrical detection of target DNA (partial avian influenza virus/H1N1/HA sequence) prepared via asymmetric PCR, we fabricated DNA-templated conducting gold nanowire bridges on planar nanogap electrodes using positively charged gold nanoparticles.  相似文献   

17.
With a view to developing an economical and elegant biosensor chip, we compared the efficiencies of biosensors that use gold-coated single-crystal silicon and amorphous glass substrates. The reflectivity of light over a wide range of wavelengths was higher from gold layer coated single-crystal silicon substrates than from glass substrates. Furthermore, the efficiency of reflection from gold layers of two different thicknesses was examined. The thicker gold layer (100 nm) on the single-crystal silicon showed a higher reflectivity than the thinner gold film (10 nm). The formation of a nucleic acid duplex and aptamer–ligand interactions were evaluated on these gold layers, and a crystalline silicon substrate coated with the 100-nm-thick gold layer is proposed as an alternative substrate for studies of interactions of biomolecules.  相似文献   

18.
The vapor-liquid-solid (VLS) process is a fundamental mechanism for the growth of nanowires, in which a small size (5-100 nm in diameter), high melting point metal (such as gold and iron) catalyst particle directs the nanowire's growth direction and defines the diameter of the crystalline nanowire. In this article, we show that the large size (5-50 microm in diameter), low melting point gallium droplets can be used as an effective catalyst for the large-scale growth of highly aligned, closely packed silica nanowire bunches. Unlike any previously observed results using gold or iron as catalyst, the gallium-catalyzed VLS growth exhibits many amazing growth phenomena. The silica nanowires tend to grow batch by batch. For each batch, numerous nanowires simultaneously nucleate, grow at nearly the same rate and direction, and simultaneously stop growing. The force between the batches periodically lifts the gallium catalyst upward, forming two different kinds of products on a silicon wafer and alumina substrate. On the silicon wafer, carrot-shaped tubes whose walls are composed of highly aligned silica nanowires with diameters of 15-30 nm and length of 10-40 microm were obtained. On the alumina substrate, cometlike structures composed of highly oriented silica nanowires with diameters of 50-100 nm and length of 10-50 microm were formed. A growth model was proposed. The experimental results expand the VLS mechanism to a broader range.  相似文献   

19.
As a complement to common “top–down” lithography techniques, “bottom–up” assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using, for example, DNA or specific chemical interactions as template.  相似文献   

20.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three‐dimensional curved surfaces is achieved with a strategy that combines template‐induced hydrodynamic printing and self‐assembly of nanoparticles (NPs). Non‐lithography flexible wall‐shaped templates are replicated with microscale features by dicing a trench‐shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self‐assemble into close‐packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non‐interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single‐NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号