首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic model of heterogeneous recombination in dissociated carbon dioxide on high-temperature heat-shield coatings is developed; the model takes into account the nonequilibrium adsorption-desorption reactions of oxygen atoms and their recombination in the Eley-Rideal and Langmuir-Hinshelwood reactions. On the basis of a comparison of the calculated heat fluxes in dissociated carbon dioxide with those measured in the VGU-3 plasma generator of the Institute for Problems in Mechanics of the Russian Academy of Sciences (IPM RAS) and the available literature data, the parameters of the catalysis model are chosen for the glassy coating of the Buran orbiter tile heat shield based on the SiO2–B2O3–SiB4 system. The effects of heterogeneous recombination proceeding in accordance with the Langmuir-Hinshelwood mechanism, as well as the processes involving carbon atoms and those involving physically adsorbed oxygen atoms, on the heat fluxes to the glassy coating are analyzed on the surface temperature range from 300 to 2000 K.  相似文献   

2.
An efficient method of investigating the processes of interaction between gas mixtures and catalytic surfaces is developed within the framework of classical molecular dynamics. The recombination and chemical-energy accommodation coefficients on the catalytic surface can be determined with fewer computational resources than in the quantum-mechanical and semiclassical approaches. Oxygen atom recombination on a β-cristobalite surface of the type frequently used in spacecraft heat shield systems is investigated. The probability of atom recombination and the recombination energy accommodation coefficient obtained are in satisfactory agreement with the available experimental data and calculations made by means of the semiclassical method. The hypothesis that the probability of the Eley-Rideal reaction decreases and the probability of atom adsorption increases with increase in the atom collision energy is confirmed. It is attributable to the tendency of atoms to be trapped in the potential well and be desorbed in the atomic state when the surface collision energy is high instead of entering into a recombination reaction and then being desorbed in the molecular state.  相似文献   

3.
On the basis of the density-functional theory, cluster models of the adsorption of oxygen atoms on aluminum oxide are constructed and the corresponding potential-energy surface is calculated. Quantum-mechanical calculations showed that it is necessary to take into account the angular dependence of the potential-energy surface and the relaxation of the surface monolayers. Using this surface in molecular dynamics calculations made it possible to obtain the probabilities of the heterogeneous recombination of oxygen atoms on the α-Al2O3 surface, which are in good agreement with experimental data. The calculations performed substantially decrease the amount of experimental investigations necessary reliably to describe the heterogeneous catalysis on promising reusable heat shield coatings for analyzing heat transfer during spacecraft entry into the atmosphere.  相似文献   

4.
The adsorption, desorption, impact, and associative heterogeneous recombination rate coefficients are determined for atomic oxygen in the temperature range between 500 and 2000 K on the basis of quantum chemical data on the energy of interaction of atomic and molecular oxygen with the clusters that model an α-Al203 surface. These coefficients are used to calculate the heterogeneous recombination probabilities and the heat fluxes to the surface under the conditions similar to those of the MESOX facility.  相似文献   

5.
The catalytic properties of heat-shielding coatings (β-cristobalite and SiC) used on space vehicles are analyzed on the basis of the microscopic approach with consideration of the molecular structure of the near-surface layer. The heterogeneous recombination coefficient of oxygen atoms and the recombination energy accommodation coefficient are determined. The energy distribution by internal degrees of freedom is calculated. In particular, it is found that, when the energy of collision of atoms with the surface is small, the oxygen atom heterogeneous recombination is more efficient for SiC coatings, whereas this recombination is more efficient in the case of β-cristobalite if the collision energy is large. Nevertheless, the heat-transfer coefficient is greater for SiC coatings in the studied range of collision energy variations, since the recombination energy accommodation is larger.  相似文献   

6.
The rate coefficients of the elementary stages of the complete system of heterogeneous catalytic recombination of dissociated oxygen on a copper oxide surface are determined on the basis of quantum-mechanics calculations within the framework of cluster models. The coefficients are used to calculate the dependence of the effective coefficient of heterogeneous catalytic recombination of oxygen atoms on the temperature and the partial pressure on a wide range of surface conditions. It is established that it can considerably vary depending on these conditions.  相似文献   

7.
Several cluster models of oxygen atom adsorption on an Al2O3 surface are constructed on the basis of the density functional method. The performed quantum mechanical computations allow one to reveal a number of important features of the potential energy surface to describe the heterogeneous catalytic processes with the use of molecular dynamics methods. The heterogeneous recombination of oxygen atoms is simulated according to the Eley-Rideal mechanism. It is shown that the potential energy surface should be used with consideration of the internal relaxation of surface monolayers to correctly describe the process under study.  相似文献   

8.
 The effect of sweeping by the departing droplets on the heat transfer coefficient in dropwise condensation is studied analytically here. Using basic principles, an analytical model for dropwise condensation is devised, which takes into account the elementary processes that make up the dropwise condensation cycle. The analysis is divided into two parts: in the first part, the heat transfer as a result of nucleation and coalescing of the droplets is considered. In the second part, the effect of sweeping is introduced. The results are presented as the variation of nondimensional heat flux versus the distance from the upper edge of the condenser surface at various surface subcoolings. Calculations show that the variation of heat flux with surface subcooling is linear only at small values of subcooling. As the subcooling is increased the slope of the mean heat flux versus subcooling curve decreases, and for a sufficiently high body force passes through a maximum. Received on 12 August 1999 / Published online: 29 November 2001  相似文献   

9.
The design of aerospace vehicles has required the solution of radically new scientific and technological problems. One of the important problems has been to create reusable heat shield materials. In [1, 2] information concerning the methods and results of solving these problems, including the development of composites from ultrathin quartz fibers and carbon-carbon materials for the “Buran” orbital vehicle heat shield, was presented. The basic thermophysical characteristics of these materials include both the rate or probability coefficients of heterogeneous nitrogen and oxygen atom recombination and the accommodation coefficients of energy recombination at high surface temperatures. In the present paper the experimental and computational aspects of determining these parameters, which are also of interest for new heat shield materials for future space transport systems, are discussed.  相似文献   

10.
The results of an experimental and numerical investigation of the heat transfer between a subsonic jet of dissociated nitrogen and a titanium surface, through which molecular oxygen is blown into the jet, are presented. It is established that in the nonequilibrium boundary layer regime the dependence of the heat flux on the injected oxygen flow rate is nonmonotonic. At a certain flow rate the heat transfer to the titanium surface reaches a maximum that considerably exceeds (by 20%) the heat transfer to an impermeable wall. The observed increase in heat transfer in the presence of injection is attributed to the interaction of the gas-phase exchange reactions and the recombination of atoms on the titanium surface, which has sharply different catalytic properties with respect to the recombination of nitrogen and oxygen atoms.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 148–155, July–August, 1991.  相似文献   

11.
A three-dimensional flow of dissociating air past blunt bodies is investigated in the framework of the thin viscous shock layer theory. Multicomponent diffusion and homogeneous chemical reactions, including dissociation, recombination, and exchange reactions, are taken into account. The generalized Rankine-Kugoniot conditions are specified on the shock wave and the conditions which take into account the heterogeneous catalytic reactions, on the surface of the body. The viscous shock layer equations are solved together with the heat equations inside the coating, which is carbon with a deposited thin film of SiO2, or quartz. The case of a thermally insulated surface is also considered. The problem for the case of the motion of a body along the re-entry trajectory into Earth's atmosphere is investigated numerically. The temperature of the surface and the heat flux toward it are given as a dependence on the height (tine) of the flight for different cases of the specification of the catalytic reactions. It is shown that the difference between the heat fluxes towards the thermally insulated surface and the fluxes toward the heat-conducting surface in the neighborhood of the stagnation point is of the order of 6–12% for all the cases considered. This makes it possible to decouple the solution of the problem of heat conduction in the body.Translated fron Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 140–146, November–December, 1985.deceased  相似文献   

12.
It is shown that the heterogeneous recombination of nitrogen atoms on a catalytically active surface in a stream of dissociated air is accompanied by intense gas-phase recombination of the nitrogen in exchange reactions whose rate is determined by the rate of heterogeneous recombination of atomic oxygen.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 156–158, May–June, 1980.  相似文献   

13.
The distinctive features of the formation of the catalyticity of materials with respect to atom recombination on the material surface are investigated for mixtures of different high-temperature gases under conditions of hypersonic atmospheric flight or bench setups. It is shown that in general the catalyticity constants (heterogenous recombination probabilities) of individual components determined experimentally in dissociated flows of “pure” gases are improperly used for calculating the heat fluxes to material surfaces in multicomponent gas flows, owing to differences in the occupation of the surface by atoms in pure gases and mixtures. This effect must be taken into account in interpreting the experimental data which so far have been the only source of information on material catalyticity in gas mixtures. Otherwise, the results of calculations of the heat transfer to hypersonic flight vehicles could turn out to be invalid. Examples of the possible effect of ignoring this factor on the calculated heat fluxes are presented.  相似文献   

14.
Experimental studies on enhancing the pool boiling heat transfer coefficient of binary dilute mixtures of water/glycerol, water/MEG (Mono-ethylene glycol) and water/DEG (di-ethylene glycol) have been carried out. Some particular endothermic chemical reactions related to ammonium salts were used to enhance the pool boiling heat transfer coefficient, simultaneously with occurrence of pool boiling heat transfer. Accordingly, 100?g of Ammonium nitrate, ammonium perborate and Ammonium sulfate were selected to dissolve into mixtures. High and extreme solution enthalpies of each of these ammonium salt powders are employed to reduce the surface temperature around the horizontal cylinder locally. Results demonstrated that presence of ammonium salts into the mixtures deteriorates the surface temperature of cylinder and as the result, higher pool boiling heat transfer coefficient is reported for tested solutions. Results are also reported and compared for different ammonium salts to find the influence of inducing different enthalpies of solution on pool boiling heat transfer coefficient. Obtained results also indicated that presence of endothermic reaction besides the pool boiling heat transfer enhances the heat transfer coefficients in comparison with nucleate pool boiling phenomenon solely.  相似文献   

15.
A kinetic scheme of processes including the formation and quenching of electronically and vibrationally excited particles is proposed for the shock layer adjacent to the surface of a body flying at hypersonic speed. We present results of a numerical calculations for the stagnation point obtained under the thin viscous shock layer approximation for space shuttle flight conditions.We show that the release of atom recombination energy into the internal molecular degrees of freedom and the finite rate of relaxation reduce the calculated heat flux by 20 %.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

16.
机械传动关键活动零部件接触副往往受到力载荷和摩擦热载荷的耦合作用,使得接触界面间的接触力学行为的分析变得极其复杂. 利用基于等效夹杂方法建立的考虑热对流非均质材料热弹接触力学分析模型研究不同摩擦系数、夹杂位置和材料属性等参数对材料表面及内部温升及热应力分布影响规律. 此外,进一步分析了接触副材料中含分布球形夹杂时摩擦热造成的影响. 结果表明:接触副表面温升梯度受热对流系数的影响较大;下表面温升和热应力随摩擦系数增大而增大;分布夹杂则将接触副材料下表面温升及热应力分布变得更为复杂.   相似文献   

17.
Impinging flames are used in fire safety research, industrial heating and melting, and aerospace applications. Multiple modes of heat transfer, such as natural convection, forced convection and thermal radiation, etc. are commonly important in those processes. However, the detailed heat transfer mechanisms are not well understood. In this paper, a model is developed to calculate the thermal response of an unconfined nonburning ceiling from an impinging buoyant diffusion flame. This model uses an algorithm for conduction into the ceiling material. It takes account of heat transfer due to radiation from the fire source to the ceiling surface, and due to reradiation from the ceiling surface to other items. Using experimental data, the convective heat transfer coefficient at lower surface is deduced from this model. In addition, the predicted heat fluxes are compared with the existing experimental data, and the comparison results validate the presented model. It is indicated that this model can be used to predict radial-dependent surface temperature histories under a variety of different realistic levels of fire energy generation rates and fire-to-ceiling separation distance.  相似文献   

18.
The present paper investigates experimentally and numerically the effect of the heterogeneous recombination of atoms on the heat transfer of models in a subsonic jet of dissociated nitrogen for the conditions of an experiment in the VGU-2 plasma generator and determines the effective probabilities of the heterogeneous recombination of nitrogen atoms for a number of materials at high temperatures.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 166–172, May–June, 1985.  相似文献   

19.
Numerical solutions are obtained for the equations of a uniform compressible boundary layer with variable physical properties in the vicinity of a stagnation point with different principal curvatures in the presence of an injected gas with the same properties as the incident flow. The results of the numerical solutions are approximated for the heat flux in the form of a relation that depends on the variation of the product of viscosity and density across the boundary layer and on the ratio of the principal radii of curvature.Using the concepts of effective diffusion coefficients in a multicomponent boundary layer, previously introduced by the author in [1], and the generalized analogy between heat and mass transfer in the presence of injection, together with the numerical solutions obtained, it is always possible, even without additional solutions of the boundary-layer equations, to derive final formulas for the heat fluxes in a flow of dissociating gas of arbitrary chemical composition, provided that we make the fundamental assumption that all recombination reactions take place at the surface.By way of example, formulas are given for the heat transfer to the surface of a body from dissociating air, regarded as a five-component mixture of the gases O, N, NO, O2, N2, and from a dissociating mixture of carbon dioxide and molecular nitrogen of arbitrary composition, regarded as an eleven-component mixture of the gases O, N, C, NO, C2, O2, N2, CO, CN, C3, CO2.In the process of obtaining and analyzing these solutions it was found that, in computing the heat flux, a multicomponent mixture can be replaced with an effective binary mixture with a single diffusion coefficient only when the former can be divided into two groups of components with different (but similar) diffusion properties. In this case the concentrations of one group at the surface must be zero, while the diffusion flows of the second group at the surface are expressible, using the laws of mass conservation of the chemical elements, in terms of the diffusion flows of the first. Then the single effective diffusion coefficient is the binary diffusion coefficient D(A,M), where A relates to one group of components and M to the other.In view of the small amount of NO(c(NO) < 0.05), the diffusion transport of energy in dissociated air maybe described with the aid of a single binary diffusion coefficient D(A, M)(A=O, N, M=O2, N2, NO). However even in the case of complete dissociation into O and C atoms at the outer edge of the boundary layer, the diffusion transport of energy in dissociated carbon dioxide can not be described accurately enough by means of a model of a binary mixture with a single diffusion coefficient, since the diffusion properties of the O and C atoms are distinctly different.  相似文献   

20.
A thermo-ecological performance analysis of an irreversible regenerative air refrigerator cycle exchanging heat with thermal reservoirs is presented. In the analysis, the external irreversibility effects due to heat transfer across finite temperature differences and the heat leak loss between the external heat reservoirs while the internal irreversibilities are due to the non-isentropic compression and expansion processes and the regenerative loss are taken into account. The effects of regeneration and heat sources temperature ratio are given special emphasis and investigated in detail. A comparative performance analysis considering the objective functions of an ecological coefficient of performance, exergetic efficiency and coefficient of performance is also carried out. The maximum of the objective functions and the corresponding optimal conditions have been derived analytically. The obtained results may provide a general theoretical tool for the thermo-ecological design of regenerative air refrigerators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号