首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noncovalent interactions of a hydrogen bond donor with an aromatic pi system present a challenge for density functional theory, and most density functionals do not perform well for this kind of interaction. Here we test seven recent density functionals from our research group, along with the popular B3LYP functional, for the dimer of H 2S with benzene. The functionals considered include the four new meta and hybrid meta density functionals of the M06 suite, three slightly older hybrid meta functionals, and the B3LYP hybrid functional, and they were tested for their abilities to predict the dissociation energies of three conformations of the H 2S-benzene dimer and to reproduce the key geometric parameters of the equilibrium conformation of this dimer. All of the functionals tested except B3LYP correctly predict which of the three conformations of the dimer is the most stable. The functionals that are best able to reproduce the geometry of the equilibrium conformation of the dimer with a polarized triple-zeta basis set are M06-L, PWB6K, and MPWB1K, each having a mean unsigned relative error across the two experimentally verifiable geometric parameters of only 8%. The success of M06-L is very encouraging because it is a local functional, which reduces the cost for large simulations. The M05-2X functional yields the most accurate binding energy of a conformation of the dimer for which a binding energy calculated at the CCSD(T) level of theory is available; M05-2X gives a binding energy for the system with a difference of merely 0.02 kcal/mol from that obtained by the CCSD(T) calculation. The M06 functional performs well in both categories by yielding a good representation of the geometry of the equilibrium structure and by giving a binding energy that is only 0.19 kcal/mol different from that calculated by CCSD(T). We conclude that the new generation of density functionals should be useful for a variety of problems in biochemistry and materials where aromatic functional groups can serve as hydrogen bond acceptors.  相似文献   

2.
Woodcock et al. [J. Phys. Chem. A 2002, 106, 11923] pointed out that no density functional was able to obtain the correct sign of the relative energies of the allene and propyne isomers of C3H4 and that density functional theory (DFT) predicts that poly-ynes are insufficiently stabilized over cumulenes for higher homologues. In the present work, we show that the recent M05 density functional predicts the correct ordering of allene and propyne and gives a mean unsigned error (MUE) of only 1.8 kcal/mol for the relative energies of the two isomers of C3H4, C5H4, and C7H4. Two other recent functionals, M05-2X and PWB6K, also give reasonably low MUEs, 2.7 and 3.0 kcal/mol, respectively, as compared to 6.2 kcal/mol for the popular B3LYP functional. Another challenging problem for density functionals has been a tendency to overpolarize conjugated pi systems. We test this here by considering proton affinities of conjugated polyenes and conjugated Schiff bases. Again M05-2X performs quite well, with MUEs of 2.1 and 3.9 kcal/ mol, respectively, as compared to 5.8 and 5.9 kcal/mol for B3LYP. Averaged over the three problems, M05-2X has a MUE of 3.0 kcal/mol, the BMK functional of Boese et al. has an MUE of 3.2 kcal/mol, and M05 has an MUE of 5.1 kcal/mol. Twenty-two other tested functionals have MUEs of 5.2-8.1 kcal/mol averaged over the three test problems. Both M05 and M05-2X do quite well, compared to other density functionals, for torsion potentials in butadiene and styrene, and M05 does very well for bond length alternation in conjugated polyenes. Since the M05 functional has broad accuracy for main group and transition metal chemistry and M05-2X has broad accuracy for main group chemistry, we conclude that significant progress is being made in improving the performance of DFT across a wide range of problem types.  相似文献   

3.
In this work the ISOL24 database of isomerization energies of large organic molecules presented by Huenerbein et al. [Phys. Chem. Chem. Phys., 2010, 12, 6940] is updated, resulting in the new benchmark database called ISOL24/11, and this database is used to test 50 electronic model chemistries. To accomplish the update, the very expensive and highly accurate CCSD(T)-F12a/aug-cc-pVDZ method is first exploited to investigate a six-reaction subset of the 24 reactions, and by comparison of various methods with the benchmark, MCQCISD-MPW is confirmed to be of high accuracy. The final ISOL24/11 database is composed of six reaction energies calculated by CCSD(T)-F12a/aug-cc-pVDZ and 18 calculated by MCQCISD-MPW. We then tested 40 single-component density functionals (both local and hybrid), eight doubly hybrid functionals, and two other methods against ISOL24/11. It is found that the SCS-MP3/CBS method, which is used as benchmark for the original ISOL24, has an MUE of 1.68 kcal mol(-1), which is close to or larger than some of the best tested DFT methods. Using the new benchmark, we find ωB97X-D and MC3MPWB to be the best single-component and doubly hybrid functionals respectively, with PBE0-D3 and MC3MPW performing almost as well. The best single-component density functionals without molecular mechanics dispersion-like terms are M08-SO, M08-HX, M05-2X, and M06-2X. The best single-component density functionals without Hartree-Fock exchange are M06-L-D3 when MM terms are included and M06-L when they are not.  相似文献   

4.
Parametrization of the two-electron reduced density matrix (2-RDM) has recently enabled the direct calculation of electronic energies and 2-RDMs at the computational cost of configuration interaction with single and double excitations. While the original Kollmar energy functional yields energies slightly better than those from coupled cluster with single-double excitations, a general family of energy functionals has recently been developed whose energies approach those from coupled cluster with triple excitations [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]. In this paper we test the parametric 2-RDM method with one of these improved functionals through its application to the conversion of hydrogen peroxide to oxywater. Previous work has predicted the barrier from oxywater to hydrogen peroxide with zero-point energy correction to be 3.3-to-3.9 kcal/mol from coupled cluster with perturbative triple excitations [CCSD(T)] and -2.3 kcal/mol from complete active-space second-order perturbation theory (CASPT2) in augmented polarized triple-zeta basis sets. Using a larger basis set than previously employed for this reaction-an augmented polarized quadruple-zeta basis set (aug-cc-pVQZ)-with extrapolation to the complete basis-set limit, we examined the barrier with two parametric 2-RDM methods and three coupled cluster methods. In the basis-set limit the M parametric 2-RDM method predicts an activation energy of 2.1 kcal/mol while the CCSD(T) barrier becomes 4.2 kcal/mol. The dissociation energy of hydrogen peroxide to hydroxyl radicals is also compared to the activation energy for oxywater formation. We report energies, optimal geometries, dipole moments, and natural occupation numbers. Computed 2-RDMs nearly satisfy necessary N-representability conditions.  相似文献   

5.
6.
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order M?ller-Plesset perturbation theory, fourth-order M?ller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values.  相似文献   

7.
8.
We have tested three pure density functional theory (DFT) functionals, BLYP, MPWPW91, MPWB95, and ten hybrid DFT functionals, B3LYP, B3P86, B98, MPW1B95, MPW1PW91, BMK, M05-2X, M06-2X, B2GP-PLYP, and DSD-BLYP with a series of commonly used basis sets on the performance of predicting the bond energies and bond distances of 31 small neutral noble-gas containing molecules. The reference structures were obtained using the CCSD(T)∕aug-cc-pVTZ theory and the reference energies were based on the calculation at the CCSD(T)∕CBS level. While in general the hybrid functionals performed significantly better than the pure functionals, our tests showed a range of performance by these hybrid functionals. For the bond energies, the MPW1B95∕6-311+G(2df,2pd), BMK∕aug-cc-pVTZ, B2GP-PLYP∕aug-cc-pVTZ, and DSD-BLYP∕aug-cc-pVTZ methods stood out with mean unsigned errors of 2.0-2.3 kcal∕mol per molecule. For the bond distances, the MPW1B95∕6-311+G(2df,2pd), MPW1PW91∕6-311+G(2df,2pd), and B3P86∕6-311+G(2df,2pd), DSD-BLYP∕6-311+G(2df,2pd), and DSD-BLYP∕aug-cc-pVTZ methods stood out with mean unsigned errors of 0.008-0.013 A? per bond. The current study showed that a careful selection of DFT functionals is very important in the study of noble-gas chemistry, and the most recommended methods are MPW1B95∕6-311+G(2df,2pd) and DSD-BLYP∕aug-cc-pVTZ.  相似文献   

9.
10.
The density functionals B3LYP, B3PW91, BMK, HSE06, LC-ωPBE, M05, M06, O3LYP, TPSS, ω-B97X, and ω-B97XD are used to optimize key transition states and intermediates for ethylene addition to Ni(edt)(2) (edt = S(2)C(2)H(2)). The efficacy of the basis sets 6-31G**, 6-31++G**, cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ is also examined. The geometric parameters optimized with different basis sets and density functionals are similar and agree well with experimental values. The ω-B97XD functional gives relative energies closest to those from CCSD, while M06 and HSE06 yield results close to those from CCSD(T). CASSCF and CASSCF-PT2 calculation results are also given. Variation of the relative energies from different density functionals appears to arise, in part, from the multireference character of this system, as confirmed by the T1 diagnostic and CASSCF calculations.  相似文献   

11.
The CASPT2, CCSD, and CCSD(T) levels of wave function theory and seven density functionals were tested against experiment for predicting the ionization potentials and bond dissociation energies of actinoid monoxides and dioxides with their cations. The goal is to guide future work by enabling the choice of an appropriate method when performing calculations on actinoid-containing systems. We found that four density functionals, namely MPW3LYP, B3LYP, M05, and M06, and three levels of wave function theory, namely CASPT2, CCSD, and CCSD(T), give similar mean unsigned errors for actinoid?Coxygen bond energies and for ionization potentials of actinoid oxides and their cations.  相似文献   

12.
The interaction potentials between immiscible polar and non-polar solvents are a major driving force behind the formation of liquid:liquid interfaces. In this work, the interaction energy of water-pentane dimer has been determined using coupled-cluster theory with single double (triple) excitations [CCSD(T)], 2nd order M?ller Plesset perturbation theory (MP2), density fitted local MP2 (DF-LMP2), as well as density functional theory using a wide variety of density functionals and several different basis sets. The M05-2X exchange correlation functionals exhibit excellent agreement with CCSD(T) and DF-LMP2 after taking into account basis set superposition error. The gas phase water-pentane interaction energy is found to be quite sensitive to the specific pentane isomer (2,2-dimethylpropane vs. n-pentane) and relative orientation of the monomeric constituents. Subsequent solution phase cluster calculations of 2,2-dimethylpropane and n-pentane solvated by water indicate a positive free energy of solvation that is in good agreement with available experimental data. Structural parameters are quite sensitive to the density functional employed and reflect differences in the two-body interaction energy calculated by each method. In contrast, cluster calculations of pentane solvation of H(2)O solute are found to be inadequate for describing the organic solvent, likely due to limitations associated with the functionals employed (B3LYP, BHandH, and M05-2X).  相似文献   

13.
14.
Spurred by the apparent conflict between ab initio predictions and infrared spectroscopic evidence regarding the relative stability of isomers of protonated carbonyl sulfide, key stationary points on the isomerization surface of HOCS(+) have been examined via systematic extrapolations of ab initio energies. Electron correlation has been accounted for using second-order M?ller-Plesset perturbation theory and coupled cluster theory through triple excitations [CCSD, CCSD(T), and CCSDT] in conjunction with the correlation consistent hierarchy of basis sets, cc-pVXZ (X=D,T,Q,5,6). HSCO(+) is predicted to lie lower in energy than HOCS(+) by 4.86 kcal mol(-1), computed using the focal point extrapolation scheme of Allen and co-workers [J. Chem. Phys. 99, 4638 (1993)] with corrections for anharmonic zero-point vibrational energy, core correlation, non-Born-Oppenheimer, and scalar relativistic effects. A transition state has been located, constituting the barrier to isomerization of HSCO(+) to HOCS(+), lying 68.9 kcal mol(-1) higher in energy than HSCO(+). This is well above predicted exothermicity [DeltaH(r) (o)(0 K)=48.1 kcal mol(-1), cc-pVQZ CCSD(T)] for the reaction considered in the experiments (HSCO(+)+H(2)-->OCS+H(3) (+)). Though proton tunneling will lead to a lower effective barrier, this prediction is consistent with the lack of HSCO(+) in electrical discharges in H(2)OCS, since the relative populations of HOCS(+) and HSCO(+) will depend on the experimental details of the protonation route rather than the relative thermodynamic stability of the isomers. Anharmonic vibrational frequencies and vibrationally corrected rotational constants from cc-pVTZ CCSD(T) cubic and quartic force constants are provided, to aid in the spectroscopic observation of the energetically favorable but apparently elusive HSCO(+) isomer.  相似文献   

15.
We present a detailed theoretical investigation on the dissociation energy of CuO(+), carried out by means of coupled cluster theory, the multireference averaged coupled pair functional (MR-ACPF) approach, diffusion quantum Monte Carlo (DMC), and density functional theory (DFT). At the respective extrapolated basis set limits, most post-Hartree-Fock approaches agree within a narrow error margin on a D(e) value of 26.0 kcal mol(-1) [coupled-cluster singles and doubles level augmented by perturbative triples corrections, CCSD(T)], 25.8 kcal mol(-1) (CCSDTQ via the high accuracy extrapolated ab initio thermochemistry protocol), and 25.6 kcal mol(-1) (DMC), which is encouraging in view of the disaccording data published thus far. The configuration-interaction based MR-ACPF expansion, which includes single and double excitations only, gives a slightly lower value of 24.1 kcal mol(-1), indicating that large basis sets and triple excitation patterns are necessary ingredients for a quantitative assessment. Our best estimate for D(0) at the CCSD(T) level is 25.3 kcal mol(-1), which is somewhat lower than the latest experimental value (D(0) = 31.1 ± 2.8 kcal mol(-1)[semicolon] reported by the Armentrout group) [Int. J. Mass Spectrom. 182/183, 99 (1999)]. These highly correlated methods are, however, computationally very demanding, and the results are therefore supplemented with those of more affordable DFT calculations. If used in combination with moderately-sized basis sets, the M05 and M06 hybrid functionals turn out to be promising candidates for studies on much larger systems containing a [CuO](+) core.  相似文献   

16.
The SM8 quantum mechanical aqueous continuum solvation model is applied to a 17-molecule test set proposed by Nicholls et al. (J. Med. Chem. 2008, 51, 769) to predict free energies of solvation. With the M06-2X density functional, the 6-31G(d) basis set, and CM4M charge model, the root-mean-square error (RMSE) of SM8 is 1.08 kcal mol(-1) for aqueous geometries and 1.14 kcal mol(-1) for gas-phase geometries. These errors compare favorably with optimal explicit and continuum models reported by Nicholls et al., having RMSEs of 1.33 and 1.87 kcal mol(-1), respectively. Other models examined by these workers had RMSEs of 1.5-2.6 kcal mol(-1). We also explore the use of other density functionals and charge models with SM8 and the RMSE increases to 1.21 kcal mol(-1) for mPW1/CM4 with gas-phase geometries, to 1.50 kcal mol(-1) for M06-2X/CM4 with gas-phase geometries, and to 1.27-1.64 kcal mol(-1) with three different models at B3LYP gas-phase geometries.  相似文献   

17.
Molecular structures, energetics, vibrational frequencies, and electron affinities are predicted for the phenylethynyl radical and its isomers. Electron affinities are computed using density functional theory, -namely, the BHLYP, BLYP, B3LYP, BP86, BPW91, and B3PW91 functionals-, employing the double-zeta plus polarization DZP++ basis set; this level of theory is known to perform well for the computation of electron affinities. Furthermore, ab initio computations employing perturbation theory, coupled cluster with single and double excitations [CCSD], and the inclusion of perturbative triples [CCSD(T)] are performed to determine the relative energies of the isomers. These higher level computations are performed with the correlation consistent family of basis sets cc-pVXZ (X = D, T, Q, 5). Three electronic states are probed for the phenylethynyl radical. In C2v symmetry, the out-of-plane (2B1) radical is predicted to lie about 10 kcal/mol below the in-plane (2B2) radical by DFT methods, which becomes 9.4 kcal/mol with the consideration of the CCSD(T) method. The energy difference between the lowest pi and sigma electronic states of the phenylethynyl radical is also about 10 kcal/mol according to DFT; however, CCSD(T) with the cc-pVQZ basis set shows this energy separation to be just 1.8 kcal/mol. The theoretical electron affinities of the phenylethynyl radical are predicted to be 3.00 eV (B3LYP/DZP++) and 3.03 eV (CCSD(T)/DZP++//MP2/DZP++). The adiabatic electron affinities (EAad) of the three isomers of phenylethynyl, that is, the ortho-, meta-, and para-ethynylphenyl, are predicted to be 1.45, 1.40, and 1.43 eV, respectively. Hence, the phenylethynyl radical binds an electron far more effectively than the three other radicals studied. Thermochemical predictions, such as the bond dissociation energies of the aromatic and ethynyl C-H bonds and the proton affinities of the phenylethynyl and ethynylphenyl anions, are also reported.  相似文献   

18.
Adiabatic time-dependent density functional theory is a powerful method for calculating electronic excitation energies of complex systems, but the quality of the results depends on the choice of approximate density functional. In this article we test two promising new density functionals, M11 and M11-L, against databases of 214 diverse electronic excitation energies, and we compare the results to those for 16 other density functionals of various kinds and to time-dependent Hartree-Fock. Charge transfer excitations are well known to be the hardest challenge for TDDFT. M11 is a long-range-corrected hybrid meta-GGA, and it shows better performance for charge transfer excitations than any of the other functionals except M06-HF, which is a specialized functional that does not do well for valence excitations. Several other long-range-corrected hybrid functionals also do well, and we especially recommend M11, ωB97X, and M06-2X for general spectroscopic applications because they do exceptionally well on ground-state properties as well as excitation energies. Local functionals are preferred for many applications to extended systems because of their significant cost advantage for large systems. M11-L is a dual-range local functional and-unlike all previous local functionals-it has good performance for Rydberg states as well as for valence states. Thus it is highly recommended for excitation energy calculations on extended systems.  相似文献   

19.
The performance of various density functionals has been tested for three sets of reaction energies involving radicals. It is shown that two recently designed functionals, M05-2X and M06-2X, provide the best performance. These functionals provide useful and affordable methods for future mechanistic studies involving organic radicals.  相似文献   

20.
A systematic study of techniques for treating noncovalent interactions within the computationally efficient density functional theory (DFT) framework is presented through comparison to benchmark-quality evaluations of binding strength compiled for molecular complexes of diverse size and nature. In particular, the efficacy of functionals deliberately crafted to encompass long-range forces, a posteriori DFT+dispersion corrections (DFT-D2 and DFT-D3), and exchange-hole dipole moment (XDM) theory is assessed against a large collection (469 energy points) of reference interaction energies at the CCSD(T) level of theory extrapolated to the estimated complete basis set limit. The established S22 [revised in J. Chem. Phys. 132, 144104 (2010)] and JSCH test sets of minimum-energy structures, as well as collections of dispersion-bound (NBC10) and hydrogen-bonded (HBC6) dissociation curves and a pairwise decomposition of a protein-ligand reaction site (HSG), comprise the chemical systems for this work. From evaluations of accuracy, consistency, and efficiency for PBE-D, BP86-D, B97-D, PBE0-D, B3LYP-D, B970-D, M05-2X, M06-2X, ωB97X-D, B2PLYP-D, XYG3, and B3LYP-XDM methodologies, it is concluded that distinct, often contrasting, groups of these elicit the best performance within the accessible double-ζ or robust triple-ζ basis set regimes and among hydrogen-bonded or dispersion-dominated complexes. For overall results, M05-2X, B97-D3, and B970-D2 yield superior values in conjunction with aug-cc-pVDZ, for a mean absolute deviation of 0.41 - 0.49 kcal/mol, and B3LYP-D3, B97-D3, ωB97X-D, and B2PLYP-D3 dominate with aug-cc-pVTZ, affording, together with XYG3/6-311+G(3df,2p), a mean absolute deviation of 0.33 - 0.38 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号