首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45–90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides. By analysis of a model peptide (leucine enkephalin), a limit of detection (LOD) of 0.045 pmol/μL (corresponding to 67 attomol in a sample volume of ∼15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (73%) compared to a representative UPLC-MS method (77%). The CE-MS interface was subsequently used to analyse a more complex sample of pharmaceutically relevant human proteins including insulin, tissue factor and α-synuclein. Efficient separation and protein ESI mass spectra of adequate quality could be achieved using only a small amount of sample (30 fmol). In addition, analysis of ubiquitin samples under both native and denatured conditions, indicate that the CE-MS setup can facilitate native MS applications to probe the conformational properties of proteins. Thus, the described CE-MS setup should be useful for a wide range of high-sensitivity applications in protein research.  相似文献   

2.
Negative ion nano-liquid chromatography/mass spectrometry (nano-LC/MS) and tandem mass spectrometry (nano-LC/MS(2)), using graphitised carbon as separating medium, were explored for analysing neutral and acidic O-linked and N-linked oligosaccharide alditols. Compared to the sensitivity of capillary LC/MS (flow rate of 6 microL/min) coupled with a conventional electrospray ionisation source, the nano-LC/MS (flow rate of 0.6 microL/min) with a nanoflow ion source was shown to increase the sensitivity ten-fold with a detection limit in the low-femtomole range. The absolute signals for the [M-nH](n-) ions of the oligosaccharides were increased 100-fold, enabling accumulation of high-quality fragmentation data in MS(2) mode, in which detection of low abundant sequence ions is necessary for characterisation of highly sialylated N-linked oligosaccharides. Oligosaccharides with high numbers of sialic acid residues gave dominant fragments arising from the loss of sialic acid, and less abundant fragments from cleavage of other glycosidic bonds. Enzymatic off-line desialylation of oligosaccharides in the low-femtomole range prior to MS(2) analysis was shown to increase the quality of the spectra. Automated glycofragment mass fingerprinting using the GlycosidIQ software confirmed the oligosaccharide sequence for both neutral desialylated as well as sialylated structures. Furthermore, the use of graphitised carbon nano-LC/MS enabled the detection of four sialylated O-linked oligosaccharides on membrane proteins from ovarian tissue (5 microg of total amount of protein).  相似文献   

3.
梁玉  张丽华  张玉奎 《色谱》2020,38(10):1117-1124
蛋白质组学研究在生物学、精准医学等方面发挥着重要的作用。然而研究面临的巨大挑战来自生物样品的复杂性,因此在质谱(MS)鉴定技术不断革新的同时,发展分离技术以降低样品复杂度尤为重要。毛细管电泳(CE)技术具有上样体积小、分离效率高、分离速度快等优势,其与质谱的联用在蛋白质组学研究中越来越受到关注。低流速鞘流液和无鞘流液接口的发展及商品化推动了CE-MS技术的发展。目前毛细管区带电泳(CZE)、毛细管等电聚焦(CIEF)、毛细管电色谱(CEC)等分离模式已与质谱联用,其中CZE-MS应用最广泛。目前被广泛采用的蛋白质组学研究策略主要是基于酶解肽段分离鉴定的"自下而上(bottom-up)"策略。首先,CE-MS技术对酶解肽段的检测灵敏度高达1 zmol,已成功应用于单细胞蛋白质组学;其次,毛细管电泳技术与反相液相色谱互补,为疏水性质相近的肽段(尤其是翻译后修饰肽段)的分离鉴定提供了新的途径。基于整体蛋白质分离鉴定的自上而下"top-down"策略可以直接获得更精准、更完整的蛋白质信息。CE技术在蛋白质大分子的分离方面具有分离效率高、回收率高的优势,其与质谱的联用提高了整体蛋白质的鉴定灵敏度和覆盖度。非变性质谱(native MS)是一种在近生理条件下从完整蛋白质复合物水平上进行分析的质谱技术。CE与非变性质谱联用已被尝试用于蛋白质复合体的分离鉴定。该文引用了与CE-MS和蛋白质组学应用相关的93篇文献,综述了以上介绍的CE-MS的研究进展以及在蛋白质组学分析中的应用优势,并总结和展望了其应用前景。  相似文献   

4.
The performance of a prototype porous tip sprayer for sheathless capillary electrophoresis-mass spectrometry (CE-MS) of intact proteins was studied. Capillaries with a porous tip were inserted in a stainless steel needle filled with static conductive liquid and installed in a conventional electrospray ionization (ESI) source. Using a BGE of 100 mM acetic acid (pH 3.1) and a positively charged capillary coating, a highly reproducible and efficient separation of four model proteins (insulin, carbonic anhydrase II, ribonuclease A and lysozyme) was obtained. The protein mass spectra were of good quality allowing reliable mass determination of the proteins and some of their impurities. Sheath-liquid CE-MS using the same porous tip capillary and an isopropanol-water-acetic acid sheath liquid showed slightly lower to similar analyte responses. However, as noise levels increased with sheath-liquid CE-MS, detection limits were improved by a factor 6.5-20 with sheathless CE-MS. The analyte response in sheathless CE-MS could be enhanced using a nanoESI source and adding 5% isopropanol to the BGE, leading to improved detection limits by 50-fold to 140-fold as compared to sheath liquid interfacing using the same capillary - equivalent to sub-nM detection limits for three out of four proteins. Clearly, the sheathless porous tip sprayer provides high sensitivity CE-MS of intact proteins.  相似文献   

5.
Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications.  相似文献   

6.
A sheath-flow capillary electrophoresis-mass spectrometry (CE-MS) system utilizing a fully integrated large-bore stainless-steel emitter electrode tapered at the end for micro-ionspray operation has been developed and evaluated. A separation capillary with an outer diameter of up to 360 microm was inserted into the electrode thus forming a void volume of less than 15 nL between the capillary end and the electrospray ionisation (ESI) tip. The sheath liquid, usually methanol-water (80:20) with 0.1% formic acid for positive ion mode or methanol for negative ion mode, was delivered at 0.5-1.0 microL/min. Unlike previously reported CE-MS interfaces, the CE-MS probe was incorporated directly onto an Applied Biosystems/MDS SCIEX orthogonal-spray Turbo "V" ion source for ease of use and automatic operation. This integration enables fast and facile coupling and replacement of the separation capillary without interrupting the ion source configuration, and the sheath liquid supply. The reusable electrospray electrode was precisely fabricated and aligned with the length of the nebulizing gas tube for improved reproducibility. Automation was achieved through software control of both CE and tandem MS (MS/MS) for unattended batch sample analysis. The system was evaluated for attomole- to low femtomole-level profiling of model peptides and protein mixtures, bisphosphates, as well as antiviral nucleosidic drugs in cellular extracts.  相似文献   

7.
A new methodology is proposed to automate the monitoring of sulfonamide residues in milk samples. It combines a screening unit for the total amount of sulfonamide with capillary electrophoresis-mass spectrometry (CE-MS) equipment for processing the samples containing a detectable level of sulfonamide. The screening unit consists of continuous-flow system (CFS) to precipitate the proteins connected on-line to the CE-MS equipment, in which a common characteristic ion of all sulfonamides was monitored with the MS detector by flushing the sample through the capillary. The confirmatory method is based on the purification and preconcentration of sulfonamides in a CFS unit and posterior analysis by CE-MS. The sample treatment unit was also on-line connected to the CE-MS equipment. In order to increase sensitivity, the flow rate of the sheath liquid was diminished from 0.5 to 0.2 microL.min(-1) by increasing the content in water from 0 to 50% and the formic acid from 0.5 to 1.5% in this liquid and by applying an overimposed pressure of 5 mbar during the electrophoretic separation. The method allowed the analysis of 30 samples per hour.  相似文献   

8.
Antibody-drug conjugates (ADCs) represent a fast growing class of biotherapeutic products. Their production leads to a distribution of species exhibiting different number of conjugated drugs overlaying the inherent complexity resulting from the monoclonal antibody format, such as glycoforms. ADCs require an additional level of characterization compared to first generation of biotherapeutics obtained through multiple analytical techniques for complete structure assessment. We report the development of complementary approaches implementing sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) to characterize the different aspects defining the structure of brentuximab vedotin. Native MS using sheathless CE-MS instrument as a nanoESI infusion platform enabled accurate mass measurements and estimation of the average drug to antibody ratio alongside to drug load distribution. Middle-up analysis performed after limited IdeS proteolysis allowed to study independently the light chain, Fab and F(ab')2 subunits incorporating 1, 0 to 4 and 0 to 8 payloads respectively. Finally, a CZE-ESI-MS/MS methodology was developed in order to be compatible with hydrophobic drug composing ADCs. From a single injection, complete sequence coverage could be achieved. Using the same dataset, glycosylation and drug-loaded peptides could be simultaneously identified revealing robust information regarding their respective localization and abundance. Drug-loaded peptide fragmentation mass spectra study demonstrated drug specific fragments reinforcing identification confidence, undescribed so far. Results reveal the method ability to characterize ADCs primary structure in a comprehensive manner while reducing tremendously the number of experiments required. Data generated showed that sheathless CZE-ESI-MS/MS characteristics position the methodology developed as a relevant alternative for comprehensive multilevel characterization of these complex biomolecules.  相似文献   

9.
杨云  田瑞军 《色谱》2020,38(10):1125-1132
近年来,蛋白质组学技术在样品前处理、分离技术和质谱检测技术方面获得了快速发展,已经可以实现在几小时内对上万种蛋白的同时定性和定量分析。然而,目前的主流蛋白质组学技术仍无法满足极微量生物样品,尤其是单细胞样品的组学分析需求。毛细管电泳分离技术具有峰宽窄、柱效高、样品用量少等优势,是与高分辨质谱在线联用的理想选择之一。该文评述了集成化和在线样品前处理以及主流的纳升液相色谱-质谱联用系统在高灵敏度蛋白质组学分析领域的发展现状和挑战,认为该领域的重要技术挑战之一在于目前的纳升液相色谱分离已经无法完全匹配现代高分辨质谱超过40 Hz的超高扫描速度,从而导致质谱使用效率的降低。针对上述技术挑战,该文重点探讨了毛细管电泳-质谱联用技术的独特技术优势和潜在发展机遇,主要包括:(1)面向微量酶解多肽样品的高柱效毛细管电泳分离。通过采用毛细管电色谱可以进一步改善毛细管电泳柱容量不足的局限;(2)面向高灵敏度分析的无鞘液/鞘液接口开发;(3)高效毛细管电泳分离与高扫描速度质谱检测的协同化使用。总之,我们预期毛细管电泳-质谱联用技术的进一步发展有望在针对单细胞等超微量生物学样品的蛋白质组学分析中获得更广泛的应用。  相似文献   

10.
张含智  李凤  康经武 《色谱》2023,41(2):160-167
毛细管电泳-质谱联用技术具有分离效率高、检测灵敏度高、样品消耗量少,可同时提供样品的结构信息等优点,成为复杂样品分离分析的强有力工具。但是,毛细管电泳与质谱联用的接口技术依然未能很好的解决。为了拓展我们发展的金箔包裹的毛细管电泳分离柱尖端直接作为喷雾电极和无鞘流质谱接口的应用,本文报道了用无鞘流接口毛细管电泳-电喷雾质谱联用(CE-ESI-MS)分析5种酪氨酸激酶抑制剂(舒尼替尼、甲磺酸伊马替尼、吉非替尼、达沙替尼、埃罗替尼)的研究结果。这种接口集分离与电喷雾离子化于一根毛细管中,制作简单,成本低廉,且可批量制作。实验发现采用非水毛细管电泳分离模式不仅可以对5种酪氨酸激酶抑制剂实现基线分离,而且可以获得稳定的质谱信号。考察了电解质溶液组成对分离效果的影响,得到优化的背景电解质组成,即含2%(v/v)乙酸及5 mmol/L乙酸铵的乙腈-甲醇(80∶20, v/v)混合溶剂。在优化的条件下,5种激酶抑制剂可以得到基线分离,无鞘接口也可以长时间保持稳定的电喷雾,分析物的保留时间日内、日间重复性(RSD值)分别小于0.5%和0.8%,接口批次间的RSD值小于2.6%。与水相分离条件下的CE-MS对比,非水相条件下的5种酪氨酸激酶抑制剂的分离柱效更高,检测灵敏度更高,绝对检出限达到amol级。此外,采用无鞘流CE-MS分析了各类有机酸(千层纸素A、丹酚酸C和迷迭香酸)和脂溶性的大环内酯类抗生素(阿奇霉素、红霉素和环孢素A),均可以获得良好的分离效果和质谱检测结果。  相似文献   

11.
This paper shows the potentiality of capillary electrophoresis (CE) coupled to mass spectrometry (MS) for the analysis of heterocyclic aromatic amines obtaining good results in terms of sensitivity and precision. These compounds have a special interest since they can be carcinogenic for humans. The optimization of a CE-MS method was performed and the best conditions were obtained using a 16 mM formic acid/ammonium formate solution at pH 4.5 with 60% methanol as running electrolyte. For CE-MS coupling, a sheath liquid methanol/20 mM formic acid (75/25) solution at a flow rate of 3 microL/min and hydrodynamic injection of methanol mixtures for 10 s were used. Detection limits ranging from 18 ng/g to 360 ng/g and precisions up to 1.4% and 12% for migration time and concentration, respectively, were obtained. In order to improve sensitivity, field-amplified sample injection was applied as an in-line preconcentration method. Methanol/5 mM formic acid (50/50) as a sample solvent, 3 s hydrodynamic injection (0.5 psi) of a methanol plug, and 25 s of electrokinetic injection (10 kV) of the sample were found to be the optimum conditions. Detection limits up to 25 times lower and similar precisions than those reported for hydrodynamic injection were obtained.  相似文献   

12.
Simó C  Rizzi A  Barbas C  Cifuentes A 《Electrophoresis》2005,26(7-8):1432-1441
In this work, the development of a new chiral capillary electrophoresis-mass spectrometry (CE-MS) method to separate D- and L-amino acids is shown. On-line coupling between CE and MS is established through an electrospray-coaxial sheath flow interface. Enantiomer separation is achieved by using a cheap, nonvolatile, chiral selector as beta-cyclodextrin in the background electrolyte (BGE) together with a physically coated capillary that is aimed to prevent contamination of the electrospray. The capillary coating is simple and easy to obtain as it only requires flushing of the capillary with a polymer aqueous solution for 3 min. Optimization of CE parameters (pH of BGE, type and concentration of chiral selector, and capillary inner diameter) and electrospray-MS parameters (nature and flow rate of the sheath liquid, nebulizer pressure) is carried out. Two different derivatization protocols of amino acids using dansyl chloride (DNS) and fluorescein isothiocyanate (FITC) are compared in terms of MS sensitivity and chiral resolution. Under optimum CE-MS conditions it is observed that the MS sensitivity obtained for FITC- and DNS-amino acids is similar (with limit of detection (LOD) in the microM range, corresponding to amounts injected in the fmol range) while chiral resolution is better for FITC-amino acids. The optimized method is demonstrated to provide the simultaneous analysis of 15 selected amino acids (i.e., FITC-D/L-Asp, -Glu, -Ser, -Asn, -Ala, -Pro, -Arg, and FITC-gamma-aminobutyric acid (GABA) in a single chiral CE-MS run, corresponding to the main amino acids that can be found in orange. Moreover, as a result of the high resolution achieved, it is possible to detect down to 2% of D-Asp in the presence of 98% of L-Asp. The good possibilities of chiral CE-MS in food analysis are corroborated through the detection of the main amino acids in a commercial orange juice (i.e., FITC-L-Asp, -Glu, -Ser, -Asn, -Pro, -Arg, and the nonchiral FITC-GABA) as well as the determination of the fraudulent addition of synthetic amino acids (containing D- and L-forms) to a fresh orange juice.  相似文献   

13.
An analytical approach based on sheathless on-line coupling of capillary electrophoresis (CE) and electrospray ionization (ESI) quadrupole time-of-flight (QTOF) mass spectrometry (MS) has been developed for providing new insight into the characterization of carbohydrate mixtures. The home-built sheathless CE/  相似文献   

14.
Capillary electrophoresis (CE) mass spectrometry (MS), with its ability to separate compounds present in extremely small volume samples rapidly, with high separation efficiency, and with compound identification capability based on molecular weight, is an extremely valuable analytical technique for the analysis of complex biological mixtures. The highest sensitivities and separation efficiencies are usually achieved by using narrow capillaries (5-50 micro m i.d.) and by using sheathless CE-to-MS interfaces. The difficulties in CE-to-MS interfacing and the limited loadability of these narrow columns, however, have prevented CE-MS from becoming a widely used analytical technique. To remedy these limitations, several CE-MS interfacing techniques have recently been introduced. While electrospray ionization is the most commonly used ionization technique for interfacing CE-to-MS, matrix assisted laser desorption ionization has also been used, using both on-line and off-line techniques. Moreover, the high concentration detection limit of CE has been addressed by development of several sample concentration and sample focusing methods. In addition, a wide variety of techniques such as capillary zone electrophoresis, capillary isoelectric focusing, and on-column transient isotachophoresis have now been interfaced to MS. These advances have resulted in a rapid increase in the use of CE-MS in the analysis of complex biological mixtures. CE-MS has now been successfully applied to the analysis of a wide variety of compounds including amino acids, protein digests, protein mixtures, single cells, oligonucleotides, and various small molecules relevant to the pharmaceutical industry.  相似文献   

15.
The concept of interfacing a large-size column for capillary electrophoresis (CE) to electrospray ionization mass spectrometry (ESI-MS) for robust and automatic CE-MS operation is reported. Both standard ionspray interface and microionspray interface have been modified to operate in a sheath flow pattern to overcome the common stability problem in CE-MS coupling. To make the interface sensitive, a step-down stainless steel tube with smaller inner diameter and tapered tip was incorporated onto a larger tube embracing the CE column via cold soldering. The devices were evaluated for quantitative analysis of nucleotides at femtomole level and stable analytical performance in peptide profiling.  相似文献   

16.
The dimensions of the capillaries used to construct a typical coaxial capillary electrophoresis-mass spectrometry (CE-MS) interface, i.e. the inner diameter, the outer diameter and the wall thickness, have been shown to affect the performance of the CE-MS system. The influence of these parameters has been investigated in both MS and MS-MS modes. The initial results indicate that by reducing all the sheath capillaries' dimensions and the CE capillary outer diameter, better operation and increased sensitivity can be achieved. The capillary arrangement which gives optimum sensitivity and stable operation has been suggested.  相似文献   

17.
To simplify capillary electrophoresis-mass spectrometry (CE-MS) operation, a background electrolyte (BGE) containing a polymer additive is introduced that allows the analysis of peptides and protein mixtures in underivatized fused-silica capillaries without any pretreatment, thereby increasing throughput. The most important characteristic of these polymer additives is that they do not significantly suppress the signals of the proteins and peptides under electrospray ionization, thereby allowing them to be used as an additive to common BGEs that are used for CE-MS analysis of peptide and protein mixtures. In addition, because the fused-silica capillary inner wall is continuously coated with the polymer additive, migration irreproducibility, due to the degradation of the capillary inner wall coating, under CE-MS is minimized. High sensitivity of detection, migration reproducibility, and ease of fabrication allow CE-MS analyses that require long analysis time, such as (CE-MS/MS)n, to be performed with ease. The utility of this background electrolyte has been demonstrated for the analysis of complex protein digests and intact proteins.  相似文献   

18.
Stutz H 《Electrophoresis》2005,26(7-8):1254-1290
High throughput, outstanding certainty in peptide/protein identification, exceptional resolution, and quantitative information are essential pillars in proteome research. Capillary electrophoresis (CE) coupled to mass spectrometry (MS) has proven to meet these requirements. Soft ionization techniques, such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), have paved the way for the story of success of CE-MS in the analysis of biomolecules and both approaches are subject of discussion in this article. Meanwhile, CE-MS is far away from representing a homogeneous field. Therefore the review will cover a vast area including the coupling of different modes of CE (capillary zone electrophoresis, capillary isoelectric foscusing, capillary electrochromatography, micellar electrokinetic chromatography, nonaqueous capillary electrophoresis) to MS as well as on-line preconcentration techniques (transient capillary isotachophoresis, solid-phase extraction, membrane preconcentration) applied to compensate for restricted detection sensitivity. Special attention is given to improvements in interfacing, namely addressing nanospray and coaxial sheath liquid design. Peptide mapping, collision-induced dissociation with subsequent tandem MS, and amendments in mass accuracy of instruments improve information validity gained from MS data. With 2-D on-line coupling of liquid chromatography (LC) and CE a further topic will be discussed. A special section is dedicated to recent attempts in establishing CE-ESI-MS in proteomics, in the clinical and diagnostic field, and in the food sector.  相似文献   

19.
The fabrication of a novel sheathless interface for capillary electrophoresis–electrospray–mass spectrometry (CE–ESI–MS) is described. A programmable CO2 laser was used to ablate small channels in the walls of a polyimide capillary near the terminus. Subsequent exposure of the channel region to a cellulose acetate solution followed by drying resulted in the formation of an electrically conductive semi-permeable membrane. Application of an appropriate voltage to the reservoir resulted in the simultaneous establishment of an electrical connection for CE and ESI. Interface viability was demonstrated by conducting a CE separation of a peptide mixture, with detection accomplished via positive ion mode ESI–MS. For the peptide Val-Tyr-Val, a limit of detection of 0.1 femtomole (S/N 3) was achieved using single reaction monitoring. Attributes of the interface include structural robustness, ease of fabrication, minimal interface dead volume, and the ability to alter post-separation analyte ionization status by use of appropriate buffers in the interface reservoir.  相似文献   

20.
Over the last two decades, coupled capillary electrophoresis (CE)–mass spectrometry (MS) has developed into a generally accepted technique with a wide applicability. A growing number of CE-MS applications make use of capillaries where the internal wall is modified with surface coating agents. In CE-MS, capillary coatings are used to prevent analyte adsorption and to provide appropriate conditions for CE-MS interfacing. This paper gives an overview of the various capillary coating strategies used in CE-MS. The main attention is devoted to the way coatings can contribute to a proper CE-MS operation. The foremost capillary coating methods are discussed with emphasis on their compatibility with MS detection. The role of capillary coatings in the control of the electroosmotic flow and the consequences for CE-MS coupling are treated. Subsequently, an overview of reported applications of CE-MS employing different coating principles is presented. Selected examples are given to illustrate the usefulness of the coatings and the overall applicability of the CE-MS systems. It is concluded that capillary coatings can enhance the performance and stability of CE-MS systems, yielding a highly valuable and reproducible analytical tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号