首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaestiones Mathematicae》2013,36(3):323-337
Abstract

It is shown that the category CS of closure spaces is a topological category. For each epireflective subcategory A of a topological category X a functor F A :XX is defined and used to extend to the general case of topological categories some results given in [4], [5] and [10] for epireflective subcategories of the category Top of topological spaces.  相似文献   

2.
《Quaestiones Mathematicae》2013,36(4):295-301
ABSTRACT

Let C be a category of topological spaces and continuous functions which is full, hereditary and closed under homeomorphisms and products. If A is a subclass of C, let E(A) be the full subcategory of C whose objects are the subspaces in A. In this paper we characterize the epireflective subcategories of C containing A and contained in E(A) by introducing a “semiclosure” operator which is a generalization for the “idempotent semi-limit” operator introduced by S.S. Hong (see [5]) with respect to Top o. In case A is extensive in C, so that E(A) = C, all the extensive subcategories of C containing A are thus characterized.  相似文献   

3.
《Quaestiones Mathematicae》2013,36(2):121-158
Abstract

The well known characterizations of equational classes of algebras with not necessaryly finitary operations by FELSCHER [6.7] and of categories of A-algebras for algebraic theories A in the sense of LINTON [10], esp., by means of their forgetful functors are the foundations of a concept of varietal functors U:KL over arbitrary basecategories L. They prove to be monadic functors which satisfy an additional HOM-condition [17]. (In the case L = Set this condition is always fulfilled, see LINTON [11].)

Contrary to monadic functors, varietal functors are closed under composition. Pleasent algebraic properties of the base-category L can be ‘lifted’ along varietal functors, such as e.g. factorization properties, (co-) completeness, classical isomorphism theorems, etc.

By means of the well known EILENBERG-MOORE-algebras there is a universal monadic functor UT:L TL for any functor U: KL, having a left adjoint F (T: = UF). But, in general, UT is not varietal. Under some suitable conditions, however it is possible, to construct a canonical varietal functor ?:RL, the varietal hull of U. This hull has much more interesting (algebraic) properties than the EILENBERG-MOORE construction. Moreover, results of BANASCHEWSKI-HERRLICH [2] are extended.  相似文献   

4.
Abstract

The concept of a T-discrete object is a generalization of the notion of discrete spaces in concrete categories. In this paper. T-discrete objects are used to define discrete functors. Characterizations of discrete functors are given and their relation to other important functors are studied. A faithful functor T: AX is discrete iff the full subcategory B of A consisting of all T-discrete objects is (X-iso)-coreflective in A. It follows that the existence of bicoreflective subcategories is equivalent to the existence of suitable discrete functors. Finally, necessary and sufficient conditions are found such that for a given functor T: AX, the full subcategory B of A consisting of all T-discrete A-objects is monocoreflective in A.  相似文献   

5.
6.
《Quaestiones Mathematicae》2013,36(3):189-213
Abstract

In this paper we investigate, for connection subcategories A of a topological category K, the concepts of A-monotone quotients and A-light sources, and characterize (1) those A, which give rise to an (A-monotone quotient, A-light)- factorization structure on K, (2) those factorization structures (C,D) on K, which are light, i.e. of the form (A-monotone quotient, A-light) for suitable A. It turns out that light factorization structures are rather rare in Top, but abundant and well-behaved in categories with hereditary quotients.  相似文献   

7.
Toma Albu 《代数通讯》2013,41(3):839-869
Abstract

Adapting the idea of twisted tensor products to the category of conic algebras (CA), i.e., finitely generated graded algebras, we define a family of objects hom ?[?, 𝒜] there, one for each pair 𝒜, ? ∈ CA, with analogous properties to its internal coHom objects hom [?, 𝒜], but representing spaces of transformations whose coordinate rings and the ones of their respective domains do not commute among themselves. They give rise to a CA op -based category different from that defined by the function (𝒜, ?) ?  hom [?, 𝒜]. The mentioned non commutativity is controlled by a collection of twisting maps τ𝒜, ?. We show, under certain circumstances, that (bi)algebras end ?[𝒜] ?  hom ?[𝒜, 𝒜] are counital 2-cocycle twistings of the corresponding coEnd objects end [𝒜]. This fact generalizes the twist equivalence (at a semigroup level) between, for instance, the quantum groups G L q (n) and their multiparametric versions.  相似文献   

8.
Given a cotriple 𝔾 = (G, ε, δ) on a category X and a functor E:X OppA into an abelian category A, there exists the cohomology theory of Barr and Beck: Hn(X, E) ε |A| (n ≥ 0, X ε |X|), ([1], p.249). Almost all the important cohomology theories in mathematics have been shown to be special instances of such a general theory (see [1], [2] and [3]). Usually E arises from an abelian group object Y in X in the following manner: it is the contravariant functor from X into the category Ab of abelian groups that associates to each object X in X the abelian group X(X, Y) of maps from X to Y. In such a situation we shall write Hn(X, Y)𝔾 instead of Hn(X, E)G. Barr and Beck [2] have shown that the Eilenberg-MacLane cohomology groups H?n(π, A), n ≥ 2, can be re-captured as follows. One considers the free group cotriple 𝔾′ on the category Gps of groups, which induces in a natural manner a cotriple 𝔾 on the category (Gps, π) of groups over a fixed group π.  相似文献   

9.
Abstract

In this paper it is proved that if T: AX is a topological functor satisfying certain conditions, then there is a Galois Connection between the class of bireflective subcategories of A and the class of epireflective subcategories of A that are not bireflective and that are contained in the subcategory of separated objects of A. In general such a correspondence is not bijective.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(3):301-315
ABSTRACT

In this paper we investigate the following two classes of left R-modules: N(P) ={A|A has no non-zero direct summand P ε P} and H(p) = {A} if B ? A with B ε N(P), then B = 0}, where P is a class of projective R-modules. We demonstrate that N(p) is, in general, not a torsion class but that H(P) is always a torsionfree class. We also investigate those classes P and rings R for which N(P) is the largest non-trivial torsion class of R-modules.  相似文献   

11.
《Quaestiones Mathematicae》2013,36(4):369-377
Abstract

In this paper, the relation between the notion of a discrete functor (see [4]) and the notion of a fine functor (see [1]) is examined. As a generalization of the notion of a F-fine object (see [1]), discrete functors T: AX are used to define K-fine objects, where K is a class of A-objects. It is shown that if T is in addition semi-topological, then (as for F-fine objects in a topological category, see [1]) the class of K-fine objects determines a bicoreflective subcategory of A. Moreover, it is shown that in co-complete, co-(well-powered) categories, the existence of bicoreflective subcategories is equivalent to the existence of functors that are both discrete and semi-topological.  相似文献   

12.
Let A be a commutative algebra over a field k, and VA be the k-subalgebra of Endk(A) generated by EndA(A) = A and all k-derivations of A. A study of the homological properties of VA was initiated by Hochschild, Kostant, and Rosenberg in [5], and continued by Rinehart [8], [9], Roos [11], Björk [1], Rinehart and Rosenberg [10], and others. It was proved in [5] that, if k is perfect and A is a regular affine algebra of dimension r, then the global dimension of VA is between r and 2r. Moreover, if k has positive characteristic, then gl.dim VA = 2r [8]. By a recent celebrated theorem of Roos [11], gl.dim VA = r if k has characteristic zero and A = k[x1, …, xr]; in this case VA is the so-called “Weyl algebra on 2r variables”.  相似文献   

13.
Simple locally compact rings without open left ideals were considered in [13] and general locally compact rings without open left ideals were studied extensively in [5] and [6]. We remove the hypothesis of local compactness and consider topological rings A without open left ideals but containing an open subring R. In section 4 we show that under these conditions A is completely determined by R. More precisely A can be identified with the topological ring of quotients C(R) introduced in [8]. As an R-module RA is topologically isomorphic to I*(RR), the topological injective hull of RR. The last statement was proved in [6] for A locally compact and R compact. Section 5 gives a characterization of those linearly topologized rings R that can be openly embedded into a ring A without open left ideals. In particular we shall show that the open left ideals form an idempotent ideal filter with quotient ring A. In section 6 we consider the class ? of all topological rings that can be openly embedded into a topological ring without open left ideals. If we restrict our attention to linearly topologized rings, then ? is Morita-invariant. In section 2 we construct a topological ring of quotients Q*(R) and prove that it coincides with the ring C(R) of [8].  相似文献   

14.
In this paper we prove that every coseparable involutory Hopf algebra over the ring of integers Z which is a free Z-module is the group ring of some group. This result was proved independently for Hopf algebras which are finitely generated Z-modules by H.-J. Schneider [6], using similar techniques. We then give some examples of coseparable Hopf algebras over number rings which are not group algebras, and give an example of a cocommutative coseparable coalgebra over a number ring which cannot be given a multiplicative structure making it into a Hopf algebra. The Hopf algebra structure theory required for this paper is found in [1], [4], and [5]. For completeness we give proofs here of the coalgebra analogues to some “well-known” facts about separable algebras.  相似文献   

15.
16.
Abstract

In [7] the subject of reproducing kernel Hilbert spaces (RKHSs) of linear functionals associated with linear operators and, in particular, with second-order generalized stochastic processes (GSPs), is pursued. In this work these ideas are extended to nonlinear operators. As an example the characteristic operator of a GSP is pursued. The so-called nonlinear space of the process associated with the characteristic operator is investigated and the RKHS of functionals isometrically isomorphic to it is constructed. Unlike the linear space, the nonlinear analysis is not limited to second order GSPs.  相似文献   

17.
18.
1. Abstract

This paper is concerned with the stability of certain properties of linear operators in locally convex topological vector spaces under perturbations by operators which are small in some sense. Section 3 deals with the very useful concept of Banach balls which was introduced by Ra?kov [9]. Some properties are discussed. The following section investigates the invertibility of certain operators generalizing results of Robert [10] and de Bruyn [2],[3]. These results are used extensively in the sequel. We go on to discuss Riesz operators. We obtain results stronger than those of de Bruyn [1] with regard to asymptotically quasi-compact operators in locally convex spaces. The proofs are basically adaptations of those from [1]. In the final section we observe some results concerning the range ad null space of an operator perturbed by bounded operators. We obtain a result very similar to an unproved theorem of Vladimirski? [a] and point out their differences. MOS codes 4601, 4710, 4745, 4768, 4755.

This work was undertaken at Cambridge University and I would like to thank my research supervisor Dr. F. Smithies for his help and encouragement. I wish also to thank Dr. G.F.C. de Bruyn ad Dr. J.H. Webb for their interesting discussions on this subject. During my research I was financed by a Sir Henry Strakosch Memorial Scholarship and a grant from the South African Council for Scientific and Industrial Research.  相似文献   

19.
Bin Zhu 《代数通讯》2013,41(9):2857-2871
It is proved that any cluster-tilted algebra defined in the cluster category 𝒞(H) has the same representation type as the initial hereditary algebra H. For any valued quiver (Γ, Ω), an injection from the subset 𝒫?(Ω) of the cluster category 𝒞(Ω) consisting of indecomposable preprojective objects, preinjective objects, and the first shifts of indecomposable projective modules to the set of cluster variables of the corresponding cluster algebra 𝒜Ω is given. The images are called “preprojective cluster variables”. It is proved that all preprojective cluster variables other than ui have denominators u dim M in their irreducible fractions of integral polynomials, where M is the corresponding preprojective module or preinjective module. In case the valued quiver (Γ, Ω) is of finite type, the denominator theorem holds with respect to any cluster. Namely, let x = (x1,…, xn) be a cluster of the cluster algebra 𝒜Ω, and V the cluster tilting object in 𝒞(Ω) corresponding to x, whose endomorphism algebra is denoted by Λ. Then the denominator of any cluster variable y other than xi is x dim M, where M is the indecomposable Λ-module corresponding to y. This result is a generalization of the corresponding result of Caldero–Chapoton–Schiffler to the non-simply-laced case.  相似文献   

20.
GW-Rootsystems     
GW-rootsystems R are introduced as a special class of k-rootsystems where each root is grey or white and every white orbit has length 1, p-1, or p elements. Rank 2 GW-rootsystems, in the presence of at least one white root, are classified and the only possible types, up to isomorphism, are: W1VW1, W11, W2=W1⊕W1, W1⊕Ã1, S2 and H2(n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号