首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Emission of cluster ions occurs during laser irradiation of substituted pyridines even at threshold laser power densities. The clusters generated include dimers and trimers, and appear in both positive-ion and negative-ion laser mass spectra. Fragments of cluster ions are observed and can be rationlized as losses of neutral molecules from (nM ± H)±. Dissociation of clusters occurs primarily from substituents on the pyridine ring. Laser mass spectrometry of pyridoxine hydrochloride and pyridoxamine-dihydrochloride resulted in the emission of clusters analogous to those observed for nicotinic acid. In contrast to these results, secondary-ion and field-desorption mass spectra of salts contain the ions CnAn?1+ and CnAn+1?, that were not detected in the laser mass spectra.  相似文献   

2.
A differential mobility analyzer (DMA) is used in atmospheric pressure N2 to select a narrow range of electrical mobilities from a complex mix of cluster ions of composition (CA)n(C+)z. The clusters are introduced into the N2 gas by electrospraying concentrated (~20 mM) acetonitrile solutions of ionic liquids (molten salts) of composition CA (C+ = cation, A? = anion). Mass analysis of these mobility-selected ions reveals the occurrence of individual neutral ion-pair evaporation events from the smallest singly charged clusters: (CA)nC+→(CA)n? 1C++CA. Although bulk ionic liquids are effectively involatile at room temperature, up to six sequential evaporation events are observed. Because this requires far more internal energy than available in the original clusters, substantial heating (~10 eV) must take place in the ion guides leading to the mass analyzer. The observed increase in IL evaporation rate with decreasing size is drastic, in qualitative agreement with the exponential vapor pressure dependence predicted by Kelvin’s formula. A single evaporation event is barely detectable at n = 13, while two or more are prominent for n ≤ 9. Magic number clusters (CA)4C+ with singularly low volatilities are found in three of the four ionic liquids studied. Like their recently reported liquid phase prenucleation cluster analogs, these magic number clusters could play a key role as gas-phase nucleation seeds. All the singularly involatile clusters seen are cations, which may help understand commonly observed sign effects in ion-induced nucleation. No other charge-sign asymmetry is seen on cluster evaporation.  相似文献   

3.
The hydrogen-bonded (N2H4) n clusters and the van der Waals (OCS) n clusters are size selected in a scattering experiment with a He beam up to the cluster sizen=6. By measuring the angular distributions of the scattered clusters the complete fragmentation pattern of electron impact ionization is obtained. For Hydrazine the two main fragment masses are the protonated species (N2H4) n?1H+ and with somewhat weaker intensities also the nominal ion mass (N2H4) n + . The largest intensity is observed for the monomer ion N2H 4 + to which clusters up ton=5 fragment. For carbonylsulfide, completely different results are obtained. Aside from the fragments of the OCS monomer and the van der Waals cluster fragments (OCS) 2 + and (OCS) 3 + signals at mass S 2 + , S 3 + and S2OCS+ are detected. This indicates a fast chemical reaction in the cluster according to: S + OCS → CO + S2 which occurs for clusters of sizen ≥ 2. Peaks at S 3 + and S2OCS+ are seen for the first time forn ≥ 5 according to a further reaction of S2 in the cluster.  相似文献   

4.
The interaction of Aun+ (n ≤ 20) clusters with Ar is investigated by combining mass spectrometric experiments and density functional theory calculations. We show that the inert Ar atom forms relatively strong bonds with Aun+. The strength of the bond strongly varies with the cluster size and is governed by a fine interplay between geometry and electronic structure. The chemical bond between Aun+ and Ar involves electron transfer from Ar to Au, and a stronger interaction is found when the Au adsorption site has a higher positive partial charge, which depends on the cluster geometry. Au15+ is a peculiar cluster size, which stands out for its much stronger interaction with Ar than its neighbors, signaled by a higher abundance in mass spectra and a larger Ar adsorption energy. This is shown to be a consequence of a low-coordinated Au adsorption site in Au15+, which possesses a large positive partial charge.  相似文献   

5.
In the problem of the production silver nanoparticles, mass spectrometry allows one to identify nanoclusters as nuclei or intermediates in the synthesis of nanoparticles and to understand the mechanisms of their formation. Using low-temperature secondary emission mass spectrometry, we determined the cluster composition of a system formed in the microwave treatment of a solution of AgNO3 in ethylene glycol (M). Along with silver ion–ethylene glycol associates М m ? Ag+ (m = 1–5) and small silver clusters AgM n + (n = 1–9), unusual silver clusters with one hydrogen atom [Ag n H]+ (n = 2, 4) were observed. Possible pathways for the formation of silver nanoparticles taking into account hydrogen-containing cluster intermediates are discussed.  相似文献   

6.
The mass spectra of silver- and gold-clusters, generated by a gas aggregation technique and ionized by electron impact, reveal anomalies in the relative abundance of both singly and multiply charged clusters. Concentration maxima for singly charged species Ag n + and Au n + (n=3, 9, 19, (21), 35) are in agreement with experimental data of Katakuse and the predictions from the electronic shell model. The observed anomalies in the abundance spectra of doubly charged silver and gold clusters as well as triply charged silver cluster ions are explained in terms of electronic shell closing.  相似文献   

7.
The results of a detailed study of the photodissociation of carbon cluster ions, C 3 + to C 20 + , are presented and discussed. The experiments were performed using internally cold cluster ions derived from pulsed laser evaporation of a graphite target rod in a helium buffer gas followed by supersonic expansion. The mass selected clusters were photodissociated using 248 nm and 351 nm light from an excimer laser. Photofragment branching ratios, photodissociation cross sections and data on the laser fluence dependence of photodissociation are reported. For almost all initial clusters, C n + , the dominant photodissociation pathway was observed to be loss of a C3 unit to give a C n?3 + ion. This observation is interpreted as indicating that dissociation occurs by a statistical unimolecular process rather than by direct photodissociation. The photodissociation was found to be linear with laser fluence forn>5 with 248 nm and 351 nm light; quadratic forn=5 for 248 nm and 351 nm; and linear forn=4 at 248 nm. Dissociation energies for the carbon cluster ions implied by these results are discussed. The photodissociation cross sections were found to change dramatically with cluster size and with the wavelength of the photodissociating light.  相似文献   

8.
Metastable decay of cluster ions has been discovered only recently. It was noted that one has to take this metastable decay into account when using mass spectrometry to probe neutral clusters, because ion abundance anomalies in mass spectra of rare gas and molecular clusters are caused by delayed metastable evaporation of monomers following ion production. Moreover, it was found that(i) the individual metastable reaction rates k depend strongly on cluster size and cluster ion production pathways and that(ii) there exists experimental evidence (k=k(t)) and a theoretical prediction that a given mass selected cluster ion generated by electron impact ionization of a nozzle expansion beam will comprise a range of metastable decay rates. In addition, it was discovered that metastable Ar cluster ions which lose two monomers in the μs time regime decay via sequential decay series Ar n + *→Ar n?1 + *→Ar n?2 + * with cluster sizes 7≤n≤10 andn=3 (similar results were obtained recently in case of N2 cluster ions). Conversely, the dominant metastable decay channel of Ar 4 + * into Ar 2 + was found to proceed predominantly via a single step fissioning process.  相似文献   

9.
A near atmospheric pressure ion source with a β-emitter as electron source is used to inject ions into a supersonic water expansion. Cluster ions of the structure (H2O)+ n have been observed forn up to 8. Forn>3 these cluster ions cannot be obtained by ionization of water clusters in vacuum, but they can be grown in the cold environment of a supersonic beam. Extremely clean conditions are necessary for the observation of these cluster ions. The data can be explained by assuming that the local potential minimum calculated for the (H2O) n + ,n=2, potential hypersurface exists also forn>2. The model developed to explain these data is similar to that proposed for ionized rare gas clusters.  相似文献   

10.
Monte-Carlo calculations have been performed for positively charged xenon-argon clusters in the temperature range between 10K and 40K for cluster sizes up ton=27. The argon-argon interaction potential stems from empirical data, the Xe+-Ar potential is determined by ab initio MRD-CI calculations and a semi-empirical treatment of spin-orbit effects. Special stability is found for cluster sizesn=10, 13, 19 and less pronounced forn=23 and 25 fairly independent of the temperature. The geometrical structure of the clusters are given and the construction principle is discussed in light of the interactions among neutral argon atoms and the xenon ion — argon interaction. Comparison with measured mass spectra for mixed rare-gas clusters and [Xen]+ clusters is made and shows a consistent picture for the building principle.  相似文献   

11.
Photoabsorption spectra are reported for Cs n + and C60Csn + + clusters for n=40, 60, 120 and 310. The spectra were obtained by heating the mass selected clusters in a beam by means of photoabsorption until they evaporated metal atoms. The resulting mass loss was observed in a time-of-flight mass spectometer. The plasmon-like resonance in pure Cs clusters shifts to lower energies with decreasing cluster size. The collective electronic excitations in clusters containing C60 are split in energy as would be expected for fullerene molecules coated with layers of metal.  相似文献   

12.
Reactions of cooled, size-selected aluminum cluster ions (Aln+, n = 1–8) with oxygen have been studied at collision energies from 0.15 to 10.0 eV (center-of-mass) under single-collision conditions. With the exception of the atomic ion, all size clusters undergo exoergic reactions which result in extensive fragmentation of the metal cluster framework. Significant energy barriers are found for reaction of all clusters except the dimer. The barrier height increases with cluster size from Al3+ to Al7+, then drops for Al8+.  相似文献   

13.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

14.
Cluster ions from fast atom bombardment of liquid alcohols and nitriles were examined using a continuous-flow technique. Protonated molecular MnH+ species are the dominant cluster ions observed in molecules of formula M. The abundances of the MnH+ cluster ions decrease monotonically with increasing n, and within a homologous series the MnH+ abundance diminishes more rapidly for higher molecular mass compounds. Reaction products (ROH)n(H2O)H+ and (ROH)n(ROR)H+ are observed also in the case of alcohols, and the ion abundances decrease with increasing n. Radiation damage yields fragment ions and ionic alkyl reaction products which are captured in solvent clusters. Semi-empirical molecular orbital methods were used to examine the energetics of cluster ion formation and decomposition pathways. Metastable decomposition processes exhibit only evaporative loss of monomers, with the probability of loss increasing sharply with n. The evaporative ensemble model of Klots was used to predict the cluster size-dependent trends of metastable dissociation processes observed for alcohol and nitrile cluster ions.  相似文献   

15.
The collisional velocity dependence of the cross sections for fragmentation of mass-selected (CO2) n + (n+2...7) clusters in collisions with Ar atoms is presented. Interesting structure can be observed in the cross sections which indicate that the collision occurs between the Ar atom and one CO2 molecule within the cluster. The results may be explained by assuming that the collision leads to either vibrational excitation of a loosely bound CO2 monomer which then leaves the cluster or excitation of the entire cluster to a dissociative state.  相似文献   

16.
The intensity distribution of benzene+-Arn cluster ions formed by laser ionization of neutral clusters has been investigated: two main intensity anomalies (magic numbers atn=20 and 45) have been observed in the 15–60 size range. The evaporation dynamics of these species in the 2–50 microsecond time window following ionization has been studied using the electrostatic mirror of a reflectron time-of-flight mass spectrometer as a kinetic energy analyser capable to distinguish parent and daughter ions. The magic numbers are interpreted in terms of size dependent evaporation behaviors: beyondn=20, a sudden decrease of the evaporation energy is observed; in then=45–47 size range, the magic number is accounted for by the specific dynamics of then=46 and 47 clusters, in particular the possible loss of two argon atoms forn=47 within the experimental time window. These results and their implications on the cluster structure are discussed in the light of the evaporative ensemble model and compared to the evaporation characteristics of similar species, in particular the neat rare gas clusters.  相似文献   

17.
Both positive and negative phosphorus cluster ions were generated from the laser ablation of a red phosphorus sample. The mass distribution of phosphorus cluster ions was found to be very sensitive to the power density of the ablation laser. The P 7 + species exhibits the highest signal intensity in the recorded mass spectra of bare phosphorus cluster cations, as does P 5 - among the anions. Their special structural stability can be attributed to their planar configuration and their aromatic character. As the phosphorus cluster size increases, the odd/even alternation of the signal intensity becomes more pronounced. For the P n + species with n > 24, the relative abundance varies in the order of 8 and P n + with n = 8k + 1 (k = 3–11) are more intense than their neighbors. For comparison, some binary phosphide cluster ions, including CnP m - , SinP m - , BnP m + and AlnP m + , were produced as well. The mass distribution of binary phosphide cluster ions changes with different components. From analysis of the recorded mass spectra of the phosphide cluster ions, the larger clusters may be in a polyhedral configuration and tend to have all valence electrons paired.  相似文献   

18.
《Chemical physics letters》1987,134(3):214-219
A method is described for the production of large cluster ions by direct laser vaporization in a low-pressure FTMS. Production of high-mass carbon cluster ions (Cn+; 40 <n < 180) and bismuth-antimony (BixSby+) cluster ions containing up to five metal atoms are reported. The observed distributions are compared with those obtained previously by both direct laser vaporization and molecular beam sources. Details of the mechanism for formation of these larger cluster ions by direct laser vaporization are discussed. The mass selectivity and long ion residence times obtainable in the FTMS may now be utilized in the study of these cluster ions. Results are presented from a limited study of the ion/molecule reactions and collision induced dissociation of the high-mass carbon cluster ions.  相似文献   

19.
A reflecting time of flight mass spectrometer (RETOF) is used to study unimolecular and collision induced fragmentation of ammonia cluster ions. Synchrotron radiation from the BESSY electron storage ring is used in a range of photon energies from 9.08 up to 17.7 eV for single photon ionisation of neutral clusters in a supersonic beam. The threshold photoelectron photoion coincidence technique (TPEPICO) is used to define the energy initially deposited into the cluster ions. Metastable unimolecular decay (µs range) is studied using the RETOF's capacity for energy analysis. Under collision free conditions the by far most prominent metastable process is the evaporation of one neutral NH3 monomer from protonated clusters (NH3) n ? 2NH 4 + . Abundance of homogeneous vs. protonated cluster ions and of metastable fragments are reported as a function of photon energy and cluster size up ton=10.  相似文献   

20.
Using density functional theory (DFT) method with 6-31G* basis set, we have carried out the optimizing calculation of geometry, vibrational frequency and thermodynamical stability for (AlN) n + and (AlN) n + (n=1–15) clusters. Moreover, their ionic potential (IP) and electron affinity (EA) were discussed. The results show that the electrical charge condition of the cluster has a relatively great impact on the structure of the cluster and with the increase of n, this kind of impact is reduced gradually. There are no Al-Al and N-N bonds in the stable structure of (AlN) n + or (AlN) n -, and the Al-N bond is the sole bond type. The magic number regularity of (AlN) n + and (AlN) n - is consistent with that for (AlN) n , indicating that the structure with even n such as 2, 4, 6, ... is more stable. In addition, (AlN10 has the maximal ionization power (9.14 eV) and the minimal electron affinity energy (0.19 eV), which manifests that (AlN)10 is more stable than other clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号