首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
MP2 and CCSD(T) complete basis set (CBS) limit interaction energies and geometries for more than 100 DNA base pairs, amino acid pairs and model complexes are for the first time presented together. Extrapolation to the CBS limit is done by using two-point extrapolation methods and different basis sets (aug-cc-pVDZ - aug-cc-pVTZ, aug-cc-pVTZ - aug-cc-pVQZ, cc-pVTZ - cc-pVQZ) are utilized. The CCSD(T) correction term, determined as a difference between CCSD(T) and MP2 interaction energies, is evaluated with smaller basis sets (6-31G** and cc-pVDZ). Two sets of complex geometries were used, optimized or experimental ones. The JSCH-2005 benchmark set, which is now available to the chemical community, can be used for testing lower-level computational methods. For the first screening the smaller training set (S22) containing 22 model complexes can be recommended. In this case larger basis sets were used for extrapolation to the CBS limit and also CCSD(T) and counterpoise-corrected MP2 optimized geometries were sometimes adopted.  相似文献   

2.
Weak, medium, and strong charge-transfer (CT) complexes containing various electron donors (C(2)H(4), C(2)H(2), NH(3), NMe(3), HCN, H(2)O) and acceptors (F(2), Cl(2), BH(3), SO(2)) were investigated at the CCSD(T)/complete basis set (CBS) limit. The nature of the stabilization for these CT complexes was evaluated on the basis of perturbative NBO calculations and DFT-SAPT/CBS calculations. The structure of all of the complexes was determined by the counterpoise-corrected gradient optimization performed at the MP2/cc-pVTZ level, and most of complexes possess a linear-like contact structure. The total stabilization energies lie between 1 and 55 kcal/mol and the strongest complexes contain BH(3) as an electron acceptor. When ordering the electron donors and electron acceptors on the basis of these energies, we obtain the same order as that based on the perturbative E2 charge-transfer energies, which provides evidence that the charge-transfer term is the dominant energy contribution. The CCSD(T) correction term, defined as the difference between the CCSD(T) and MP2 interaction energies, is mostly small, which allows the investigation of the CT complexes of this type at the "cheap" MP2/CBS level. In the case of weak and medium CT complexes (with stabilization energy smaller than about 15 kcal/mol), the dominant stabilization originates in the electrostatic term; the dispersion as well as induction and δ(HF) terms covering the CT energy contribution are, however, important as well. For strong CT complexes, induction energy is the second (after electrostatic) most important energy term. The role of the induction and δ(HF) terms is unique and characteristic for CT complexes. For all CT complexes, the CCSD(T)/CBS and DFT-SAPT/CBS stabilization energies are comparable, and surprisingly, it is true even for very strong CT complexes with stabilization energy close to 50 kcal/mol characteristic by substantial charge transfer (more than 0.3 e). It is thus possible to conclude that perturbative DFT-SAPT analysis is robust enough to be applied even for dative-like complexes with substantial charge transfer.  相似文献   

3.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

4.
Planar H-bonded and stacked structures of guanine...cytosine (G.C), adenine...thymine (A...T), 9-methylguanine...1-methylcytosine (mG...mC), and 9-methyladenine...1-methylthymine (mA...mT) were optimized at the RI-MP2 level using the TZVPP ([5s3p2d1f/3s2p1d]) basis set. Planar H-bonded structures of G...C, mG...mC, and A...T correspond to the Watson-Crick (WC) arrangement, in contrast to mA...mT for which the Hoogsteen (H) structure is found. Stabilization energies for all structures were determined as the sum of the complete basis set limit of MP2 energies and a (DeltaE(CCSD(T)) - DeltaE(MP2)) correction term evaluated with the cc-pVDZ(0.25,0.15) basis set. The complete basis set limit of MP2 energies was determined by two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T and X = T and Q. This procedure is required since the convergency of the MP2 interaction energy for the present complexes is rather slow, and it is thus important to include the extrapolation to the complete basis set limit. For the MP2/aug-cc-pVQZ level of theory, stabilization energies for all complexes studied are already very close to the complete basis set limit. The much cheaper D-->T extrapolation provided a complete basis set limit close (by less than 0.7 kcal/mol) to the more accurate T-->Q term, and the D-->T extrapolation can be recommended for evaluation of complete basis set limits of more extended complexes (e.g. larger motifs of DNA). The convergency of the (DeltaE(CCSD(T)) - DeltaE(MP2)) term is known to be faster than that of the MP2 or CCSD(T) correlation energy itself, and the cc-pVDZ(0.25,0.15) basis set provides reasonable values for planar H-bonded as well as stacked structures. Inclusion of the CCSD(T) correction is essential for obtaining reliable relative values for planar H-bonding and stacking interactions; neglecting the CCSD(T) correction results in very considerable errors between 2.5 and 3.4 kcal/mol. Final stabilization energies (kcal/mol) for the base pairs studied are very substantial (A...T WC, 15.4; mA...mT H, 16.3; A...T stacked, 11.6; mA...mT stacked, 13.1; G...C WC, 28.8; mG...mC WC, 28.5; G...C stacked, 16.9; mG...mC stacked, 18.0), much larger than published previously. On the basis of comparison with experimental data, we conclude that our values represent the lower boundary of the true stabilization energies. On the basis of error analysis, we expect the present H-bonding energies to be fairly close to the true values, while stacked energies are still expected to be about 10% too low. The stacking energy for the mG...mC pair is considerably lower than the respective H-bonding energy, but it is larger than the mA...mT H-bonding energy. This conclusion could significantly change the present view on the importance of specific H-bonding interactions and nonspecific stacking interactions in nature, for instance, in DNA. Present stabilization energies for H-bonding and stacking energies represent the most accurate and reliable values and can be considered as new reference data.  相似文献   

5.
The geometries and binding energies of 1:1, 1:2, and 1:4 formic acid-formamide complexes (FA-FMA) are calculated by quantum chemical procedures. Vibrational spectra and intermolecular distances of the most stable FA-FMA dimers as well as the influence of the basis set superposition error (BSSE) on the geometries and energies of the dimers are also discussed. All FA-FMA dimers are optimized at the B3LYP/cc-pVTZ, the MP2/cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ levels of theory to study the influence of the level of theory on the calculated geometries and energies. CCSD(T)/cc-pVTZ single-point calculations at the MP2/aug-cc-pVTZ-optimized geometries were performed as reference for estimating the quality of lower level calculations. These calculations allow us to qualitatively describe the competition between different types of hydrogen-bonding interactions in FA-FMA complexes. FA-FMA dimers are compared to other formamide complexes and to the FA-FMA crystal structure.  相似文献   

6.
The conventional strain energies of 1,2-dihydroazete, 2,3-dihydroazete, 1,2-dihydrophosphete, and 2,3-dihydrophosphete are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero-point vibrational energies are computed for all pertinent molecular systems using SCF theory, second-order perturbation theory, and density functional theory and employing the correlation consistent basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ. Single-point fourth-order perturbation theory, CCSD, and CCSD(T) calculations employing the cc-pVTZ and the cc-pVQZ basis sets are computed using the MP2/cc-pVTZ and MP2/cc-pVQZ optimized geometries, respectfully, to ascertain the contribution of higher order correlation. Three DFT functionals, B3LYP, wB97XD, and M06-2X, are employed to determine whether they can yield results similar to those obtained at the CCSD(T) level.  相似文献   

7.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

8.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

9.
To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.  相似文献   

10.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6.  相似文献   

11.
A new explicitly correlated CCSD(T)-F12 approximation is presented and tested for 23 molecules and 15 chemical reactions. The F12 correction strongly improves the basis set convergence of correlation and reaction energies. Errors of the Hartree-Fock contributions are effectively removed by including MP2 single excitations into the auxiliary basis set. Using aug-cc-pVTZ basis sets the CCSD(T)-F12 calculations are more accurate and two orders of magnitude faster than standard CCSD(T)/aug-cc-pV5Z calculations.  相似文献   

12.
The CCSD(T) and CCSDT interaction energies were determined for model planar H-bonded complexes (formamide…formamide, formamidine…formamidine) and stacked complexes (ethylene…ethylene, formaldehyde…formaldehyde). Various basis sets from the 6-31G*(0.25) to aug-cc-pVDZ were used. Difference between CCSD(T) and CCSDT interaction energies were small and become negligible (bellow 0.1 kcal/mol) if the aug-cc-pVDZ (or aug-cc-pVDZ/cc-pVDZ) basis set was applied. This result strongly supports the use of the CCSD(T) method for determination of true stabilization energies of extended complexes.  相似文献   

13.
The phenol...argon complex was studied by means of various high level ab initio quantum mechanics methods and high resolution threshold ionization spectroscopy. The structure and stabilization energy of different conformers were determined. Stabilization energy of van der Waals bonded and H-bonded PhOH...Ar complex determined at CCSD(T) complete basis set (CBS) level for CP-RI-MP2/cc-pVTZ/Ar aug-cc-pVTZ geometries amount to 434 and 285 cm(-1). The CCSD(T)/CBS were constructed either as a sum of MP2/CBS interaction energy and CCSD(T) correction term [difference between CCSD(T) and MP2 correlation energies determined with medium basis set] or directly from CCSD(T)/aug-cc-pVDZ and aug-cc-pVTZ energies. Both schemes provide very similar values. Harmonic vibrational analysis revealed that the H-bonded structure does not represent energy minimum but first order transition structure. The respective imaginary vibrational mode (16 cm(-1)) connects two possible argon locations -- above and below the phenol aromatic ring. Including the DeltaZPVE, we obtained stabilization enthalpy at 0 K of 389 cm(-1). This value is marginally higher (25-35 cm(-1), 0.07-0.10 kcal/mol) than the experimental value. The determination of DeltaZPVE constitutes the most significant error and possible improvements should come from more accurate evaluation of the (nonharmonic) vibrational frequencies.  相似文献   

14.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

15.
Scaled MP3 interaction energies calculated as a sum of MP2/CBS (complete basis set limit) interaction energies and scaled third‐order energy contributions obtained in small or medium size basis sets agree very closely with the estimated CCSD(T)/CBS interaction energies for the 22 H‐bonded, dispersion‐controlled and mixed non‐covalent complexes from the S22 data set. Performance of this so‐called MP2.5 (third‐order scaling factor of 0.5) method has also been tested for 33 nucleic acid base pairs and two stacked conformers of porphine dimer. In all the test cases, performance of the MP2.5 method was shown to be superior to the scaled spin‐component MP2 based methods, e.g. SCS–MP2, SCSN–MP2 and SCS(MI)–MP2. In particular, a very balanced treatment of hydrogen‐bonded compared to stacked complexes is achieved with MP2.5. The main advantage of the approach is that it employs only a single empirical parameter and is thus biased by two rigorously defined, asymptotically correct ab‐initio methods, MP2 and MP3. The method is proposed as an accurate but computationally feasible alternative to CCSD(T) for the computation of the properties of various kinds of non‐covalently bound systems.  相似文献   

16.
The intermolecular interaction energy of the toluene dimer has been calculated with the ARS-F model (a model chemistry for the evaluation of intermolecular interaction energy between ARomatic Systems using Feller's method), which was formerly called as the AIMI model III. The CCSD(T) (coupled cluster calculations with single and double substitutions with noniterative triple excitations) interaction energy at the basis set limit has been estimated from the second-order Moller-Plesset perturbation interaction energy at the basis set limit obtained by Feller's method and the CCSD(T) correction term obtained using a medium-size basis set. The cross (C(2)) dimer has the largest (most negative) interaction energy (-4.08 kcal/mol). The antiparallel (C(2h)) and parallel (C(S)) dimers (-3.77 and -3.41 kcal/mol, respectively) are slightly less stable. The dispersion interaction is found to be the major source of attraction in the toluene dimer. The dispersion interaction mainly determines the relative stability of the stacked three dimers. The electrostatic interaction of the stacked three dimers is repulsive. Although the T-shaped and slipped-parallel benzene dimers are nearly isoenergetic, the stacked toluene dimers are substantially more stable than the T-shaped toluene dimer (-2.62 kcal/mol). The large dispersion interaction in the stacked toluene dimers is the cause of their enhanced stability.  相似文献   

17.
Stabilization energies of the H-bonded and stacked structures of a DNA base pair were studied in the crystal structures of adenine-thymine, cytosine-guanine, and adenine-cytosine steps as well as in the 5'-d(GCGAAGC)-3' hairpin (utilizing the NMR geometry). Stabilization energies were determined as the sum of the complete basis set (CBS) limit of MP2 stabilization energies and the Delta E(CCSD(T)) - Delta E(MP2) correction term evaluated with the 6-31G*(0.25) basis set. The CBS limit was determined by a two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T. While the H-bonding energies are comparable to those of base pairs in a crystal and a vacuum, the stacking energies are considerably smaller in a crystal. Despite this, the stacking is still important and accounts for a significant part of the overall stabilization. It contributes equally to the stability of DNA as does H-bonding for AT-rich DNAs, while in the case of GC-rich DNAs it forms about one-third of the total stabilization. Interstrand stacking reaches surprisingly large values, well comparable to the intrastrand ones, and thus contributes significantly to the overall stabilization. The hairpin structure is characterized by significant stacking, and both guanine...cytosine pairs possess stacking energies larger than 11.5 kcal/mol. A high portion of stabilization in the studied hairpin comes from stacking (similar to that found for AT-rich DNAs) despite the fact that it contains two GC Watson-Crick pairs having very large H-bonding stabilization. The DFT/B3LYP/6-31G** method yields satisfactory values of interaction energies for H-bonded structures, while it fails completely for stacking.  相似文献   

18.
The respective structures and stabilities of imidazole-imidazole, benzene-imidazole, and benzene-indole dimers have been investigated using different DFT-D functional, MP2, CCSD(T), and SAPT levels of theory with a medium basis set. Comparative analysis of binding energies and structural parameters of the dimers points to a preference for stacking contact or hydrogen bond in an imidazole-imidazole dimer. In contrast, a T-shaped configuration with H-π interaction is maximally advantageous for benzene-imidazole and benzene-indole dimers. High-level ab initio calculations at the CCSD(T)/CBS and DFT-SAPT levels show that classical hydrogen-bonded tilted imidazole-imidazole dimer is a global minimum structure and that it has high electrostatic energy. However, for benzene-imidazole and benzene-indole dimers, the global minimum (N-H···π) structure has high electrostatic energy as well as dispersion energy.  相似文献   

19.
High-level ab initio calculations have been carried out to reexamine relative stability of bowl, cage, and ring isomers of C(20) and C(20)(-). The total electronic energies of the three isomers show different energy orderings, strongly depending on the hybrid functionals selected. It is found that among three popular hybrid density-functional (DF) methods B3LYP, B3PW91, PBE1PBE, and a new hybrid-meta-DF method TPSSKCIS, only the PBE1PBE method (with cc-pVTZ basis set) gives qualitatively correct energy ordering as that predicted from ab initio CCSD(T)/cc-pVDZ [CCSD(T)-coupled-cluster method including singles, doubles, and noniterative perturbative triples; cc-pVDZ-correlation consistent polarized valence double zeta] as well as from MP4(SDQ)/cc-pVTZ [MP4-fourth-order Moller-Plesset; cc-pVTZ-correlation consistent polarized valence triple zeta] calculations. Both CCSD(T) and MP4 calculations indicate that the bowl is most likely the global minimum of neutral C(20) isomers, followed by the fullerene cage and ring. For the anionic counterparts, the PBE1PBE calculation also agrees with MP4/cc-pVTZ calculation, both predicting that the bowl is still the lowest-energy structure of C(20)(-) at T=0 K, followed by the ring and the cage. In contrast, both B3LYP/cc-pVTZ and B3PW91/cc-pVTZ calculations predict that the ring is the lowest-energy structure of C(20)(-). Apparently, this good reliability in predicting the energy ordering renders the hybrid PBE method a leading choice for predicting relative stability among large-sized carbon clusters and other carbon nanostructures (e.g., finite-size carbon nanotubes, nano-onions, or nanohorns). The relative stabilities derived from total energy with Gibbs free-energy corrections demonstrate a changing ordering in which ring becomes more favorable for both C(20) and C(20)(-) at high temperatures. Finally, photoelectron spectra (PES) for the anionic C(20)(-) isomers have been computed. With binding energies up to 7 eV, the simulated PES show ample spectral features to distinguish the three competitive C(20)(-) isomers.  相似文献   

20.
A series of stationary structures of the hydrazinyl radical have been characterized by optimization at the CCSD(T)/cc-pVTZ level of theory. CCSD(T)/aug-cc-pVXZ single-point calculations have also been carried out at the optimized geometries with basis sets of different cardinal numbers (X = T, Q), which were used to obtain accurate energies via extrapolation to the complete basis set limit. A discussion on the analytical modeling of the potential energy surface of hydrazinyl is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号