首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, boosting has been combined with partial least‐squares discriminant analysis (PLS‐DA) to develop a new pattern recognition method called boosting partial least‐squares discriminant analysis (BPLS‐DA). BPLS‐DA is implemented by firstly constructing a series of PLS‐DA models on the various weighted versions of the original calibration set and then combining the predictions from the constructed PLS‐DA models to obtain the integrative results by weighted majority vote. Coupled with near infrared (NIR) spectroscopy, BPLS‐DA has been applied to discriminate different kinds of tea varieties. As comparisons to BPLS‐DA, the conventional principal component analysis, linear discriminant analysis (LDA), and PLS‐DA have also been investigated. Experimental results have shown that the inter‐variety difference can be accurately and rapidly distinguished via NIR spectroscopy coupled with BPLS‐DA. Moreover, the introduction of boosting drastically enhances the performance of an individual PLS‐DA, and BPLS‐DA is a well‐performed pattern recognition technique superior to LDA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
From the fundamental parts of PLS‐DA, Fisher's canonical discriminant analysis (FCDA) and Powered PLS (PPLS), we develop the concept of powered PLS for classification problems (PPLS‐DA). By taking advantage of a sequence of data reducing linear transformations (consistent with the computation of ordinary PLS‐DA components), PPLS‐DA computes each component from the transformed data by maximization of a parameterized Rayleigh quotient associated with FCDA. Models found by the powered PLS methodology can contribute to reveal the relevance of particular predictors and often requires fewer and simpler components than their ordinary PLS counterparts. From the possibility of imposing restrictions on the powers available for optimization we obtain an explorative approach to predictive modeling not available to the traditional PLS methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a new data compression method for estimating optimal latent variables in multi‐variate classification and regression problems where more than one response variable is available. The latent variables are found according to a common innovative principle combining PLS methodology and canonical correlation analysis (CCA). The suggested method is able to extract predictive information for the latent variables more effectively than ordinary PLS approaches. Only simple modifications of existing PLS and PPLS algorithms are required to adopt the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
When quantifying information in metabolomics, the results are often expressed as data carrying only relative information. Vectors of these data have positive components, and the only relevant information is contained in the ratios between their parts; such observations are called compositional data. The aim of the paper is to demonstrate how partial least squares discriminant analysis (PLS‐DA)—the most widely used method in chemometrics for multivariate classification—can be applied to compositional data. Theoretical arguments are provided, and data sets from metabolomics are investigated. The data are related to the diagnosis of inherited metabolic disorders (IMDs). The first example analyzes the significance of the corresponding regression parameters (metabolites) using a small data set resulting from targeted metabolomics, where just a subset of potential markers is selected. The second example—the approach of untargeted metabolomics—was used for the analysis detecting almost 500 metabolites. The significance of the metabolites is investigated by applying PLS‐DA, accommodated according to a compositional approach. The significance of important metabolites (markers of diseases) is more clearly visible with the compositional method in both examples. Also, cross‐validation methods lead to better results in case of using the compositional approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid method was developed and validated by ultra‐performance liquid chromatography–triple quadrupole mass spectroscopy with ultraviolet detection (UPLC‐UV‐MS) for simultaneous determination of paris saponin I, paris saponin II, paris saponin VI and paris saponin VII. Partial least squares discriminant analysis (PLS‐DA) based on UPLC and Fourier transform infrared (FT‐IR) spectroscopy was employed to evaluate Paris polyphylla var. yunnanensis (PPY) at different harvesting times. Quantitative determination implied that the various contents of bioactive compounds with different harvesting times may lead to different pharmacological effects; the average content of total saponins for PPY harvested at 8 years was higher than that from other samples. The PLS‐DA of FT‐IR spectra had a better performance than that of UPLC for discrimination of PPY from different harvesting times.  相似文献   

6.
Infrared emissions (IREs) of samples of pentaerythritol tetranitrate (PETN) deposited as contamination residues on various substrates were measured to generate models for the detection and discrimination of the important nitrate ester from the emissions of the substrates. Mid‐infrared emissions were generated by heating the samples remotely using laser‐induced thermal emission (LITE). Chemometrics multivariate analysis techniques such as principal component analysis (PCA), soft independent modeling by class analogy (SIMCA), partial least squares‐discriminant analysis (PLS‐DA), support vector machines (SVMs), and neural network (NN) were employed to generate the models for the classification and discrimination of PETN IREs from substrate thermal emissions. PCA exhibited less variability for the LITE spectra of PETN/substrates. SIMCA was able to predict only 44.7% of all samples, while SVM proved to be the most effective statistical analysis routine, with a discrimination performance of 95%. PLS‐DA and NN achieved prediction accuracies of 94% and 88%, respectively. High sensitivity and specificity values were achieved for five of the seven substrates investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this work we evaluated the use of different variable selection techniques combined with partial least‐squares regression (PLS) – genetic algorithm PLS (GA‐PLS), interval PLS (iPLS), and synergy interval PLS (siPLS) – in the simultaneous determination of Cd(II), Cu(II), Pb(II) and Zn(II) by anodic stripping voltammetry at a bismuth film. Generally, variable selection provided an improvement in prediction results when compared to full‐voltammogram PLS. The use of interval selection based algorithms have shown to be most adequate than the selection of discrete variables by GA. Excellent analytical performances were obtained despite the inherent complexity of the simultaneous determination.  相似文献   

8.
史栋栋  况媛媛  王桂明  彭章晓  王彦  阎超 《色谱》2014,32(3):278-283
应用基于气相色谱-质谱联用(GC-MS)的代谢组学方法结合细胞周期实验,研究羽扇豆醇体外抑制人乳腺癌细胞MCF-7增殖的作用机理。代谢组学的研究结果表明:通过正交偏最小方差判别分析(OPLS-DA)可以很好地区分羽扇豆醇作用的MCF-7细胞代谢谱与对照组细胞代谢谱,模型参数为:R2Ycum=0.988,Q2Ycum=0.964。VIP(variable importance in the projection)值大于1的差异代谢物进一步用t检验进行单位分析,选择t<0.05(VIP>1)的代谢物作为羽扇豆醇作用组的生物标志物,得到琥珀酸、磷酸、亮氨酸、异亮氨酸等11种代谢差异物。结合羽扇豆醇将细胞周期抑制在G1期这一现象,推测羽扇豆醇可能是主要抑制了三羧酸循环中的琥珀酰辅酶A的生成和底物磷酸化生成ATP的反应来抑制MCF-7细胞的增殖。本实验从代谢组学角度为乳腺癌抗肿瘤机制提供新的线索。  相似文献   

9.
A new procedure with high ability to enhance prediction of multivariate calibration models with a small number of interpretable variables is presented. The core of this methodology is to sort the variables from an informative vector, followed by a systematic investigation of PLS regression models with the aim of finding the most relevant set of variables by comparing the cross‐validation parameters of the models obtained. In this work, seven main informative vectors i.e. regression vector, correlation vector, residual vector, variable influence on projection (VIP), net analyte signal (NAS), covariance procedures vector (CovProc), signal‐to‐noise ratios vector (StN) and their combinations were automated and tested with the main purpose of feature selection. Six data sets from different sources were employed to validate this methodology. They originated from: near‐Infrared (NIR) spectroscopy, Raman spectroscopy, gas chromatography (GC), fluorescence spectroscopy, quantitative structure‐activity relationships (QSAR) and computer simulation. The results indicate that all vectors and their combinations were able to enhance prediction capability with respect to the full data sets. However, regression and NAS informative vectors from partial least squares (PLS) regression, both built using more latent variables than when building the model presented in most of tested data sets, were the best informative vectors for variable selection. In all the applications, the selected variables were quite effective and useful for interpretation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a modified version of the NIPALS algorithm for PLS regression with one single response variable. This version, denoted a CF‐PLS, provides significant advantages over the standard PLS. First of all, it strongly reduces the over‐fit of the regression. Secondly, R2 for the null hypothesis follows a Beta distribution only function of the number of observations, which allows the use of a probabilistic framework to test the validity of a component. Thirdly, the models generated with CF‐PLS have comparable if not better prediction ability than the models fitted with NIPALS. Finally, the scores and loadings of the CF‐PLS are directly related to the R2, which makes the model and its interpretation more reliable. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We introduce a new nonlinear partial least squares algorithm ‘Quadratic Fuzzy PLS (QFPLS)’ that combines the outer linear Partial Least Squares (PLS) framework and the Takagi–Sugeno–Kang (TSK) fuzzy inference system. The inner relation between the input and the output PLS score vectors is modeled by a quadratic TSK fuzzy inference system. The performance of the proposed QFPLS method is tested and compared against four other well‐known partial least squares methods (Linear PLS (LPLS), Quadratic PLS (QPLS), Linear Fuzzy PLS (LFPLS), and Neural Network PLS (NNPLS)) on various different types of randomly generated test data. QFPLS outperformed competitors based on two comparison measures: the output variables cumulative per cent variance captured by the PLS latent variables and the root mean‐square error of prediction (RMSEP). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
An evaluation of computational performance and precision regarding the cross‐validation error of five partial least squares (PLS) algorithms (NIPALS, modified NIPALS, Kernel, SIMPLS and bidiagonal PLS), available and widely used in the literature, is presented. When dealing with large data sets, computational time is an important issue, mainly in cross‐validation and variable selection. In the present paper, the PLS algorithms are compared in terms of the run time and the relative error in the precision obtained when performing leave‐one‐out cross‐validation using simulated and real data sets. The simulated data sets were investigated through factorial and Latin square experimental designs. The evaluations were based on the number of rows, the number of columns and the number of latent variables. With respect to their performance, the results for both simulated and real data sets have shown that the differences in run time are statistically different. PLS bidiagonal is the fastest algorithm, followed by Kernel and SIMPLS. Regarding cross‐validation error, all algorithms showed similar results. However, in some situations as, for example, when many latent variables were in question, discrepancies were observed, especially with respect to SIMPLS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The on‐line monitoring of batch processes based on principal component analysis (PCA) has been widely studied. Nonetheless, researchers have not paid so much attention to the on‐line application of partial least squares (PLS). In this paper, the influence of several issues in the predictive power of a PLS model for the on‐line estimation of key variables in a batch process is studied. Some of the conclusions can help to better understand the capabilities of the proposals presented for on‐line PCA‐based monitoring. Issues like the convenience of batch‐wise or variable‐wise unfolding, the method for the imputation of future measurements and the use of several sub‐models are addressed. This is the first time that the adaptive hierarchical (or multi‐block) approach is extended to the PLS modelling. Also, the formulation of the so‐called trimmed scores regression (TSR), a powerful imputation method defined for PCA, is extended for its application with PLS modelling. Data from two processes, one simulated and one real, are used to illustrate the results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Colorectal cancer (CRC) is the third commonest malignancy cancer worldwide. Clear understandings of global metabolic profiling of the normal mucosa and cancer tissues are vitally important to aid optimizing the clinical management strategy and understanding CRC biology. We studied metabolic characteristics of 20 CRC and 20 distant normal mucosa tissues extracts from 20 patients using high resolution 1H NMR spectroscopy in conjunction with multivariate analyses, such as principal component analysis (PCA). Compared with distant normal mucosa tissues, lactate, taurine, ornithine and polyamine were present at significantly higher levels in CRC tissue extracts whereas myo‐inositol was present at significantly lower level. Two metabolites ratios such as myo‐inositol/taurine and myo‐inositol/(ornithine+polyamine) appear to be the most valuable biomarkers for the differentiation CRC from normal mucosa tissues. Our data suggested that HR 1H NMR spectroscopy combined with multivariate analyses is a potentially useful technology for detecting malignant changes in the normal mucosa tissues, the technique may be further exploited for future CRC biomarker research or identification of targets for therapeutic manipulations.  相似文献   

15.
The combination of unfolded partial least‐squares (U‐PLS) with residual bilinearization (RBL) provides a second‐order multivariate calibration method capable of achieving the second‐order advantage. RBL is performed by varying the test sample scores in order to minimize the residues of a combined U‐PLS model for the calibrated components and a principal component model for the potential interferents. The sample scores are then employed to predict the analyte concentration, with regression coefficients taken from the calibration step. When the contribution of multiple potential interferents is severe, particle swarm optimization (PSO) helps in preventing RBL to be trapped by false minima, restoring its predictive ability and making it comparable to the standard parallel factor (PARAFAC) analysis. Both simulated and experimental systems are analyzed in order to show the potentiality of the new technique. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Ni Xin  Qinghua Meng  Yizhen Li  Yuzhu Hu 《中国化学》2011,29(11):2533-2540
This paper indicates the possibility to use near infrared (NIR) spectral similarity as a rapid method to estimate the quality of Flos Lonicerae. Variable selection together with modelling techniques is utilized to select representative variables that are used to calculate the similarity. NIR is used to build calibration models to predict the bacteriostatic activity of Flos Lonicerae. For the determination of the bacteriostatic activity, the in vitro experiment is used. Models are built for the Gram‐positive bacteria and also for the Gram‐negative bacteria. A genetic algorithm combined with partial least squares regression (GA‐PLS) is used to perform the calibration. The results of GA‐PLS models are compared to interval partial least squares (iPLS) models, full‐spectrum PLS and full‐spectrum principal component regression (PCR) models. Then, the variables in the two GA‐PLS models are combined and then used to calculate the NIR spectral similarity of samples. The similarity based on the characteristic variables and full spectrum is used for evaluating the fingerprints of Flos Lonicerae, respectively. The results show that the combination of variable selection method, modelling techniques and similarity analysis might be a powerful tool for quality control of traditional Chinese medicine (TCM).  相似文献   

17.
18.
Several approaches of investigation of the relationships between two datasets where the individuals are structured into groups are discussed. These strategies fit within the framework of partial least squares (PLS) regression. Each strategy of analysis is introduced on the basis of a maximization criterion, which involves the covariances between components associated with the groups of individuals in each dataset. Thereafter, algorithms are proposed to solve these maximization problems. The strategies of analysis can be considered as extensions of multi‐group principal components analysis to the context of PLS regression. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Partial least squares (PLS) is a widely used algorithm in the field of chemometrics. In calibration studies, a PLS variant called orthogonal projection to latent structures (O‐PLS) has been shown to successfully reduce the number of model components while maintaining good prediction accuracy, although no theoretical analysis exists demonstrating its applicability in this context. Using a discrete formulation of the linear mixture model known as Beer's law, we explicitly analyze O‐PLS solution properties for calibration data. We find that, in the absence of noise and for large n, O‐PLS solutions are simpler but just as accurate as PLS solutions for systems in which analyte and background concentrations are uncorrelated. However, the same is not true for the most general chemometric data in which correlations between the analyte and background concentrations are nonzero and pure profiles overlap. On the contrary, forcing the removal of orthogonal components may actually degrade interpretability of the model. This situation can also arise when the data are noisy and n is small, because O‐PLS may identify and model the noise as orthogonal when it is statistically uncorrelated with the analytes. For the types of data arising from systems biology studies, in which the number of response variables may be much greater than the number of observations, we show that O‐PLS is unlikely to discover orthogonal variation whether or not it exists. In this case, O‐PLS and PLS solutions are the same. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号